基于模糊控制器的三区电力系统负荷频率控制

C. Balamurugan
{"title":"基于模糊控制器的三区电力系统负荷频率控制","authors":"C. Balamurugan","doi":"10.11591/IJAPE.V7.I1.PP18-26","DOIUrl":null,"url":null,"abstract":"System frequency is one of the most important parameters of a power system. Du to generation-load mismatches, the system frequency can vary over a small range. When the power consumed by loads and overall losses is greater than the generated power, the operating frequency of the system will decrease, resulting in a situation known as the under frequency condition. In some other case, if some of the loads in a system are disconnected from the system suddenly, or lost, it leads to a condition called as the over frequency condition. This condition is char acterized by greater input power than the consumed power by the loads. The rest of the loads in the system will absorb the extra power and the generator inertia, leading to an increase in the system frequency. In both the cases, the system frequency fluctuates from the power system’s limited frequency range, further leading to tripping off of the substation and further collapsing of the entire system. The paper describes a new method employing a smart meter to monitor and control the power system frequency which changes according to the loading conditions in the system, whether under load condition or overload condition.","PeriodicalId":280098,"journal":{"name":"International Journal of Applied Power Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Three Area Power System Load Frequency Control Using Fuzzy Logic Controller\",\"authors\":\"C. Balamurugan\",\"doi\":\"10.11591/IJAPE.V7.I1.PP18-26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System frequency is one of the most important parameters of a power system. Du to generation-load mismatches, the system frequency can vary over a small range. When the power consumed by loads and overall losses is greater than the generated power, the operating frequency of the system will decrease, resulting in a situation known as the under frequency condition. In some other case, if some of the loads in a system are disconnected from the system suddenly, or lost, it leads to a condition called as the over frequency condition. This condition is char acterized by greater input power than the consumed power by the loads. The rest of the loads in the system will absorb the extra power and the generator inertia, leading to an increase in the system frequency. In both the cases, the system frequency fluctuates from the power system’s limited frequency range, further leading to tripping off of the substation and further collapsing of the entire system. The paper describes a new method employing a smart meter to monitor and control the power system frequency which changes according to the loading conditions in the system, whether under load condition or overload condition.\",\"PeriodicalId\":280098,\"journal\":{\"name\":\"International Journal of Applied Power Engineering\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJAPE.V7.I1.PP18-26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJAPE.V7.I1.PP18-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

系统频率是电力系统最重要的参数之一。由于发电负荷不匹配,系统频率可以在很小的范围内变化。当负载消耗的功率和总损耗大于系统产生的功率时,系统的工作频率就会降低,从而出现低频状态。在其他情况下,如果系统中的一些负载突然与系统断开连接或丢失,则会导致称为过频条件的情况。这种情况的特点是输入功率大于负载消耗的功率。系统中的其余负载将吸收额外的功率和发电机惯性,导致系统频率增加。在这两种情况下,系统频率都在电力系统的有限频率范围内波动,进一步导致变电站跳闸,进而导致整个系统崩溃。本文介绍了一种利用智能电表监测和控制电力系统频率的新方法,无论是在负荷状态下还是在过载状态下,电力系统的频率都是根据负荷情况而变化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three Area Power System Load Frequency Control Using Fuzzy Logic Controller
System frequency is one of the most important parameters of a power system. Du to generation-load mismatches, the system frequency can vary over a small range. When the power consumed by loads and overall losses is greater than the generated power, the operating frequency of the system will decrease, resulting in a situation known as the under frequency condition. In some other case, if some of the loads in a system are disconnected from the system suddenly, or lost, it leads to a condition called as the over frequency condition. This condition is char acterized by greater input power than the consumed power by the loads. The rest of the loads in the system will absorb the extra power and the generator inertia, leading to an increase in the system frequency. In both the cases, the system frequency fluctuates from the power system’s limited frequency range, further leading to tripping off of the substation and further collapsing of the entire system. The paper describes a new method employing a smart meter to monitor and control the power system frequency which changes according to the loading conditions in the system, whether under load condition or overload condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信