Saul 'yev和群显式方法

O. Østerby
{"title":"Saul 'yev和群显式方法","authors":"O. Østerby","doi":"10.7146/DPB.V44I600.113208","DOIUrl":null,"url":null,"abstract":"The Saul’yev methods for parabolic equations are implicit in form, but can be solved explicitly and are therefore interesting in connection with non-linear problems. Abdullah’s Group Explicit methods are parallel in nature and therefore interesting when using parallel computers. The  main objective of this paper is to study the accuracy of these methods. Using global error estimation we show that for all these methods the time step must be bounded by the square of the space step size to ensure a global error which can be estimated. As a curiosity we show that the two original Saul’yev methods in fact solve two different differential equations. \n ","PeriodicalId":162217,"journal":{"name":"DAIMI Report Series","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saul’yev and Group Explicit Methods\",\"authors\":\"O. Østerby\",\"doi\":\"10.7146/DPB.V44I600.113208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Saul’yev methods for parabolic equations are implicit in form, but can be solved explicitly and are therefore interesting in connection with non-linear problems. Abdullah’s Group Explicit methods are parallel in nature and therefore interesting when using parallel computers. The  main objective of this paper is to study the accuracy of these methods. Using global error estimation we show that for all these methods the time step must be bounded by the square of the space step size to ensure a global error which can be estimated. As a curiosity we show that the two original Saul’yev methods in fact solve two different differential equations. \\n \",\"PeriodicalId\":162217,\"journal\":{\"name\":\"DAIMI Report Series\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAIMI Report Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/DPB.V44I600.113208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAIMI Report Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/DPB.V44I600.113208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抛物方程的Saul 'yev方法在形式上是隐式的,但可以显式求解,因此在非线性问题中很有趣。Abdullah的Group Explicit方法本质上是并行的,因此在使用并行计算机时很有趣。本文的主要目的是研究这些方法的准确性。利用全局误差估计,我们证明了对于所有这些方法,时间步长必须以空间步长的平方为界,以确保可以估计全局误差。我们好奇地发现,原来的两种Saul 'yev方法实际上解的是两个不同的微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saul’yev and Group Explicit Methods
The Saul’yev methods for parabolic equations are implicit in form, but can be solved explicitly and are therefore interesting in connection with non-linear problems. Abdullah’s Group Explicit methods are parallel in nature and therefore interesting when using parallel computers. The  main objective of this paper is to study the accuracy of these methods. Using global error estimation we show that for all these methods the time step must be bounded by the square of the space step size to ensure a global error which can be estimated. As a curiosity we show that the two original Saul’yev methods in fact solve two different differential equations.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信