E. Hojati, Jean-François Franche, S. Coulombe, C. Vázquez
{"title":"基于多时间预测和嵌套菱形搜索的高度并行HEVC运动估计","authors":"E. Hojati, Jean-François Franche, S. Coulombe, C. Vázquez","doi":"10.1109/ICIP.2017.8296782","DOIUrl":null,"url":null,"abstract":"Rate-constrained motion estimation (RCME) is the most computationally intensive task of H.265/HEVC encoding. Massively parallel architectures, such as graphics processing units (GPUs), used in combination with a multi-core central processing unit (CPU), provide a promising computing platform to achieve fast encoding. However, the dependencies in deriving motion vector predictors (MVPs) prevent the parallelization of prediction units (PUs) processing at a frame level. Moreover, the conditional execution structure of typical fast search algorithms is not suitable for GPUs designed for data-intensive parallel problems. In this paper, we propose a novel highly parallel RCME method based on multiple temporal motion vector (MV) predictors and a new fast nested diamond search (NDS) algorithm well-suited for a GPU. The proposed framework provides fine-grained encoding parallelism. Experimental results show that our approach provides reduced GPU load with better BD-Rate compared to prior full search parallel methods based on a single MV predictor.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Highly parallel HEVC motion estimation based on multiple temporal predictors and nested diamond search\",\"authors\":\"E. Hojati, Jean-François Franche, S. Coulombe, C. Vázquez\",\"doi\":\"10.1109/ICIP.2017.8296782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rate-constrained motion estimation (RCME) is the most computationally intensive task of H.265/HEVC encoding. Massively parallel architectures, such as graphics processing units (GPUs), used in combination with a multi-core central processing unit (CPU), provide a promising computing platform to achieve fast encoding. However, the dependencies in deriving motion vector predictors (MVPs) prevent the parallelization of prediction units (PUs) processing at a frame level. Moreover, the conditional execution structure of typical fast search algorithms is not suitable for GPUs designed for data-intensive parallel problems. In this paper, we propose a novel highly parallel RCME method based on multiple temporal motion vector (MV) predictors and a new fast nested diamond search (NDS) algorithm well-suited for a GPU. The proposed framework provides fine-grained encoding parallelism. Experimental results show that our approach provides reduced GPU load with better BD-Rate compared to prior full search parallel methods based on a single MV predictor.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly parallel HEVC motion estimation based on multiple temporal predictors and nested diamond search
Rate-constrained motion estimation (RCME) is the most computationally intensive task of H.265/HEVC encoding. Massively parallel architectures, such as graphics processing units (GPUs), used in combination with a multi-core central processing unit (CPU), provide a promising computing platform to achieve fast encoding. However, the dependencies in deriving motion vector predictors (MVPs) prevent the parallelization of prediction units (PUs) processing at a frame level. Moreover, the conditional execution structure of typical fast search algorithms is not suitable for GPUs designed for data-intensive parallel problems. In this paper, we propose a novel highly parallel RCME method based on multiple temporal motion vector (MV) predictors and a new fast nested diamond search (NDS) algorithm well-suited for a GPU. The proposed framework provides fine-grained encoding parallelism. Experimental results show that our approach provides reduced GPU load with better BD-Rate compared to prior full search parallel methods based on a single MV predictor.