基于多时间预测和嵌套菱形搜索的高度并行HEVC运动估计

E. Hojati, Jean-François Franche, S. Coulombe, C. Vázquez
{"title":"基于多时间预测和嵌套菱形搜索的高度并行HEVC运动估计","authors":"E. Hojati, Jean-François Franche, S. Coulombe, C. Vázquez","doi":"10.1109/ICIP.2017.8296782","DOIUrl":null,"url":null,"abstract":"Rate-constrained motion estimation (RCME) is the most computationally intensive task of H.265/HEVC encoding. Massively parallel architectures, such as graphics processing units (GPUs), used in combination with a multi-core central processing unit (CPU), provide a promising computing platform to achieve fast encoding. However, the dependencies in deriving motion vector predictors (MVPs) prevent the parallelization of prediction units (PUs) processing at a frame level. Moreover, the conditional execution structure of typical fast search algorithms is not suitable for GPUs designed for data-intensive parallel problems. In this paper, we propose a novel highly parallel RCME method based on multiple temporal motion vector (MV) predictors and a new fast nested diamond search (NDS) algorithm well-suited for a GPU. The proposed framework provides fine-grained encoding parallelism. Experimental results show that our approach provides reduced GPU load with better BD-Rate compared to prior full search parallel methods based on a single MV predictor.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Highly parallel HEVC motion estimation based on multiple temporal predictors and nested diamond search\",\"authors\":\"E. Hojati, Jean-François Franche, S. Coulombe, C. Vázquez\",\"doi\":\"10.1109/ICIP.2017.8296782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rate-constrained motion estimation (RCME) is the most computationally intensive task of H.265/HEVC encoding. Massively parallel architectures, such as graphics processing units (GPUs), used in combination with a multi-core central processing unit (CPU), provide a promising computing platform to achieve fast encoding. However, the dependencies in deriving motion vector predictors (MVPs) prevent the parallelization of prediction units (PUs) processing at a frame level. Moreover, the conditional execution structure of typical fast search algorithms is not suitable for GPUs designed for data-intensive parallel problems. In this paper, we propose a novel highly parallel RCME method based on multiple temporal motion vector (MV) predictors and a new fast nested diamond search (NDS) algorithm well-suited for a GPU. The proposed framework provides fine-grained encoding parallelism. Experimental results show that our approach provides reduced GPU load with better BD-Rate compared to prior full search parallel methods based on a single MV predictor.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

速率约束运动估计(RCME)是H.265/HEVC编码中计算量最大的任务。图形处理单元(gpu)等大规模并行架构与多核中央处理单元(CPU)结合使用,为实现快速编码提供了一个很有前途的计算平台。然而,在导出运动向量预测器(mvp)时的依赖关系阻碍了在帧级处理预测单元(pu)的并行化。此外,典型快速搜索算法的条件执行结构并不适合为数据密集型并行问题设计的gpu。在本文中,我们提出了一种新的基于多个时间运动向量(MV)预测因子的高度并行RCME方法和一种新的适合GPU的快速嵌套菱形搜索(NDS)算法。提出的框架提供了细粒度的编码并行性。实验结果表明,与先前基于单个MV预测器的全搜索并行方法相比,我们的方法减少了GPU负载,并且具有更好的BD-Rate。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly parallel HEVC motion estimation based on multiple temporal predictors and nested diamond search
Rate-constrained motion estimation (RCME) is the most computationally intensive task of H.265/HEVC encoding. Massively parallel architectures, such as graphics processing units (GPUs), used in combination with a multi-core central processing unit (CPU), provide a promising computing platform to achieve fast encoding. However, the dependencies in deriving motion vector predictors (MVPs) prevent the parallelization of prediction units (PUs) processing at a frame level. Moreover, the conditional execution structure of typical fast search algorithms is not suitable for GPUs designed for data-intensive parallel problems. In this paper, we propose a novel highly parallel RCME method based on multiple temporal motion vector (MV) predictors and a new fast nested diamond search (NDS) algorithm well-suited for a GPU. The proposed framework provides fine-grained encoding parallelism. Experimental results show that our approach provides reduced GPU load with better BD-Rate compared to prior full search parallel methods based on a single MV predictor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信