{"title":"人工多多项式高阶神经网络模型","authors":"","doi":"10.4018/978-1-7998-3563-9.ch002","DOIUrl":null,"url":null,"abstract":"This chapter introduces multi-polynomial higher order neural network models (MPHONN) with higher accuracy. Using Sun workstation, C++, and Motif, a MPHONN simulator has been built. Real-world data cannot always be modeled simply and simulated with high accuracy by a single polynomial function. Thus, ordinary higher order neural networks could fail to simulate complicated real-world data. But MPHONN model can simulate multi-polynomial functions and can produce results with improved accuracy through experiments. By using MPHONN for financial modeling and simulation, experimental results show that MPHONN can always have 0.5051% to 0.8661% more accuracy than ordinary higher order neural network models.","PeriodicalId":236860,"journal":{"name":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","volume":"20 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Models of Artificial Multi-Polynomial Higher Order Neural Networks\",\"authors\":\"\",\"doi\":\"10.4018/978-1-7998-3563-9.ch002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter introduces multi-polynomial higher order neural network models (MPHONN) with higher accuracy. Using Sun workstation, C++, and Motif, a MPHONN simulator has been built. Real-world data cannot always be modeled simply and simulated with high accuracy by a single polynomial function. Thus, ordinary higher order neural networks could fail to simulate complicated real-world data. But MPHONN model can simulate multi-polynomial functions and can produce results with improved accuracy through experiments. By using MPHONN for financial modeling and simulation, experimental results show that MPHONN can always have 0.5051% to 0.8661% more accuracy than ordinary higher order neural network models.\",\"PeriodicalId\":236860,\"journal\":{\"name\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"volume\":\"20 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-3563-9.ch002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-3563-9.ch002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Models of Artificial Multi-Polynomial Higher Order Neural Networks
This chapter introduces multi-polynomial higher order neural network models (MPHONN) with higher accuracy. Using Sun workstation, C++, and Motif, a MPHONN simulator has been built. Real-world data cannot always be modeled simply and simulated with high accuracy by a single polynomial function. Thus, ordinary higher order neural networks could fail to simulate complicated real-world data. But MPHONN model can simulate multi-polynomial functions and can produce results with improved accuracy through experiments. By using MPHONN for financial modeling and simulation, experimental results show that MPHONN can always have 0.5051% to 0.8661% more accuracy than ordinary higher order neural network models.