D. Pirone, Daniele G Sirico, L. Miccio, V. Bianco, M. Mugnano, P. Ferraro, P. Memmolo
{"title":"微流体中更快全息重建处理的深度学习","authors":"D. Pirone, Daniele G Sirico, L. Miccio, V. Bianco, M. Mugnano, P. Ferraro, P. Memmolo","doi":"10.1364/dh.2022.tu4a.7","DOIUrl":null,"url":null,"abstract":"The huge amount of phase maps to be numerically retrieved from digital holograms is the actual bottleneck of the high-throughput holographic flow cytometry. An end-to-end neural network is discussed to speed up the holographic processing.","PeriodicalId":227456,"journal":{"name":"Digital Holography and 3-D Imaging 2022","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning for faster holographic reconstruction processing in microfluidics\",\"authors\":\"D. Pirone, Daniele G Sirico, L. Miccio, V. Bianco, M. Mugnano, P. Ferraro, P. Memmolo\",\"doi\":\"10.1364/dh.2022.tu4a.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The huge amount of phase maps to be numerically retrieved from digital holograms is the actual bottleneck of the high-throughput holographic flow cytometry. An end-to-end neural network is discussed to speed up the holographic processing.\",\"PeriodicalId\":227456,\"journal\":{\"name\":\"Digital Holography and 3-D Imaging 2022\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Holography and 3-D Imaging 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/dh.2022.tu4a.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Holography and 3-D Imaging 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/dh.2022.tu4a.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep learning for faster holographic reconstruction processing in microfluidics
The huge amount of phase maps to be numerically retrieved from digital holograms is the actual bottleneck of the high-throughput holographic flow cytometry. An end-to-end neural network is discussed to speed up the holographic processing.