基于SpanBERT和动态卷积注意的机器阅读理解

Chun-Ye Wu, Li Li, Zhigui Liu, Xiaoqian Zhang
{"title":"基于SpanBERT和动态卷积注意的机器阅读理解","authors":"Chun-Ye Wu, Li Li, Zhigui Liu, Xiaoqian Zhang","doi":"10.1145/3573834.3574512","DOIUrl":null,"url":null,"abstract":"Machine reading comprehension is a challenging task in the field of natural language processing. In this paper, we propose a new neural network structure, fused SpanBERT and Dynamic convolutional Attention Network (SDANet), for span-extracted question answering, aiming to better answer questions in a given text. the main contributions and originality of SDANet are as follows: 1) using a pre-trained language model–SpanBERT to obtain a sequential representation of the text. 2) Combining dynamic convolution with a self-attentive mechanism for capturing the local and global structure of the text during text feature interaction, with a residual mechanism to enrich the sequential information. Experimental validation on the Stanford datasets (SQuAD1.1 and SQuAD2.0) was conducted that our model made progress in span-extracted reading comprehension.","PeriodicalId":345434,"journal":{"name":"Proceedings of the 4th International Conference on Advanced Information Science and System","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Reading Comprehension Based on SpanBERT and Dynamic Convolutional Attention\",\"authors\":\"Chun-Ye Wu, Li Li, Zhigui Liu, Xiaoqian Zhang\",\"doi\":\"10.1145/3573834.3574512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine reading comprehension is a challenging task in the field of natural language processing. In this paper, we propose a new neural network structure, fused SpanBERT and Dynamic convolutional Attention Network (SDANet), for span-extracted question answering, aiming to better answer questions in a given text. the main contributions and originality of SDANet are as follows: 1) using a pre-trained language model–SpanBERT to obtain a sequential representation of the text. 2) Combining dynamic convolution with a self-attentive mechanism for capturing the local and global structure of the text during text feature interaction, with a residual mechanism to enrich the sequential information. Experimental validation on the Stanford datasets (SQuAD1.1 and SQuAD2.0) was conducted that our model made progress in span-extracted reading comprehension.\",\"PeriodicalId\":345434,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Advanced Information Science and System\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Advanced Information Science and System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573834.3574512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573834.3574512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器阅读理解是自然语言处理领域的一项具有挑战性的任务。在本文中,我们提出了一种新的神经网络结构,融合了SpanBERT和动态卷积注意网络(SDANet),用于跨度提取问题的回答,旨在更好地回答给定文本中的问题。SDANet的主要贡献和独创性如下:1)使用预训练的语言模型spanbert来获得文本的顺序表示。2)将动态卷积与自关注机制相结合,在文本特征交互过程中捕捉文本的局部和全局结构,并结合残差机制丰富序列信息。在Stanford数据集(SQuAD1.1和SQuAD2.0)上进行实验验证,我们的模型在跨度提取阅读理解方面取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Reading Comprehension Based on SpanBERT and Dynamic Convolutional Attention
Machine reading comprehension is a challenging task in the field of natural language processing. In this paper, we propose a new neural network structure, fused SpanBERT and Dynamic convolutional Attention Network (SDANet), for span-extracted question answering, aiming to better answer questions in a given text. the main contributions and originality of SDANet are as follows: 1) using a pre-trained language model–SpanBERT to obtain a sequential representation of the text. 2) Combining dynamic convolution with a self-attentive mechanism for capturing the local and global structure of the text during text feature interaction, with a residual mechanism to enrich the sequential information. Experimental validation on the Stanford datasets (SQuAD1.1 and SQuAD2.0) was conducted that our model made progress in span-extracted reading comprehension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信