基于AdaBoost的编程语言占用率分析与预测

Yang Gong, P. Zhang
{"title":"基于AdaBoost的编程语言占用率分析与预测","authors":"Yang Gong, P. Zhang","doi":"10.1109/INSAI56792.2022.00021","DOIUrl":null,"url":null,"abstract":"With the advent of computers, people need computers to help people solve some problems. In the process of solving the problem, you will encounter the problem of programming. In order to help people use appropriate programming languages to complete tasks, this paper proposes a method to analyze and predict the share of programming languages based on AdaBoost. First, collect the historical data of the world authoritative Tiobe programming language ranking list; Then the data table is visualized; Then, AdaBoost algorithm is used to model and train the share of the top five programming languages (Python, C, Java, C++, C #); Finally, enter the data to be predicted and return the predicted value of the model. After many times of training and testing, the method has a good prediction result, which can be used to analyze and predict the share of programming languages.","PeriodicalId":318264,"journal":{"name":"2022 2nd International Conference on Networking Systems of AI (INSAI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Prediction of Programming Language Occupancy Based on AdaBoost\",\"authors\":\"Yang Gong, P. Zhang\",\"doi\":\"10.1109/INSAI56792.2022.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of computers, people need computers to help people solve some problems. In the process of solving the problem, you will encounter the problem of programming. In order to help people use appropriate programming languages to complete tasks, this paper proposes a method to analyze and predict the share of programming languages based on AdaBoost. First, collect the historical data of the world authoritative Tiobe programming language ranking list; Then the data table is visualized; Then, AdaBoost algorithm is used to model and train the share of the top five programming languages (Python, C, Java, C++, C #); Finally, enter the data to be predicted and return the predicted value of the model. After many times of training and testing, the method has a good prediction result, which can be used to analyze and predict the share of programming languages.\",\"PeriodicalId\":318264,\"journal\":{\"name\":\"2022 2nd International Conference on Networking Systems of AI (INSAI)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Networking Systems of AI (INSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INSAI56792.2022.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Networking Systems of AI (INSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INSAI56792.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着计算机的出现,人们需要计算机来帮助人们解决一些问题。在解决问题的过程中,你会遇到编程的问题。为了帮助人们使用合适的编程语言来完成任务,本文提出了一种基于AdaBoost的编程语言份额分析和预测方法。首先,收集世界权威Tiobe编程语言排行榜的历史数据;然后将数据表可视化;然后,利用AdaBoost算法对排名前五的编程语言(Python、C、Java、c++、c#)的份额进行建模和训练;最后,输入要预测的数据并返回模型的预测值。经过多次训练和测试,该方法具有较好的预测效果,可用于编程语言的份额分析和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Prediction of Programming Language Occupancy Based on AdaBoost
With the advent of computers, people need computers to help people solve some problems. In the process of solving the problem, you will encounter the problem of programming. In order to help people use appropriate programming languages to complete tasks, this paper proposes a method to analyze and predict the share of programming languages based on AdaBoost. First, collect the historical data of the world authoritative Tiobe programming language ranking list; Then the data table is visualized; Then, AdaBoost algorithm is used to model and train the share of the top five programming languages (Python, C, Java, C++, C #); Finally, enter the data to be predicted and return the predicted value of the model. After many times of training and testing, the method has a good prediction result, which can be used to analyze and predict the share of programming languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信