新的LiFePO4电池模型识别在线SOC估计应用

J. Snoussi, S. B. Elghali, M. Mimouni
{"title":"新的LiFePO4电池模型识别在线SOC估计应用","authors":"J. Snoussi, S. B. Elghali, M. Mimouni","doi":"10.1109/STA50679.2020.9329305","DOIUrl":null,"url":null,"abstract":"The estimation of batteries State of charge is a crucial step in the developing of advanced plug-in and hybrid electric vehicles. In fact, the the accuracy of on line SOC estimation techniques is closely related to the reliability of the battery model which could efficiently describe the complex behavior of the battery during vehicle operation and rest periods. In this context, a new battery model is proposed and an online identification technique is developed to truck the model parameters variations and to ensure a high level of accuracy for onboard SOC estimation tasks. The accuracy of the developed model is verified by simulations using Matlab software and by experiments tests using a National Instruments platform.","PeriodicalId":158545,"journal":{"name":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New LiFePO4 Battery Model Identification for Online SOC Estimation Application\",\"authors\":\"J. Snoussi, S. B. Elghali, M. Mimouni\",\"doi\":\"10.1109/STA50679.2020.9329305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of batteries State of charge is a crucial step in the developing of advanced plug-in and hybrid electric vehicles. In fact, the the accuracy of on line SOC estimation techniques is closely related to the reliability of the battery model which could efficiently describe the complex behavior of the battery during vehicle operation and rest periods. In this context, a new battery model is proposed and an online identification technique is developed to truck the model parameters variations and to ensure a high level of accuracy for onboard SOC estimation tasks. The accuracy of the developed model is verified by simulations using Matlab software and by experiments tests using a National Instruments platform.\",\"PeriodicalId\":158545,\"journal\":{\"name\":\"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STA50679.2020.9329305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA50679.2020.9329305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在先进插电式和混合动力汽车的发展中,电池的充电状态估计是至关重要的一步。事实上,在线电池荷电状态估计技术的准确性与电池模型的可靠性密切相关,该模型能够有效地描述电池在车辆运行和休息期间的复杂行为。在此背景下,提出了一种新的电池模型,并开发了一种在线识别技术来跟踪模型参数的变化,并确保板载SOC估计任务的高准确性。利用Matlab软件进行了仿真,并在美国国家仪器公司平台上进行了实验测试,验证了所建立模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New LiFePO4 Battery Model Identification for Online SOC Estimation Application
The estimation of batteries State of charge is a crucial step in the developing of advanced plug-in and hybrid electric vehicles. In fact, the the accuracy of on line SOC estimation techniques is closely related to the reliability of the battery model which could efficiently describe the complex behavior of the battery during vehicle operation and rest periods. In this context, a new battery model is proposed and an online identification technique is developed to truck the model parameters variations and to ensure a high level of accuracy for onboard SOC estimation tasks. The accuracy of the developed model is verified by simulations using Matlab software and by experiments tests using a National Instruments platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信