Xian Yang, Shuo Wang, Yuting Xing, Ling Li, R. Xu, Karl J. Friston, Yike Guo
{"title":"揭示COVID-19的传播动态:一个贝叶斯Rt估计框架","authors":"Xian Yang, Shuo Wang, Yuting Xing, Ling Li, R. Xu, Karl J. Friston, Yike Guo","doi":"10.21203/RS.3.RS-137557/V1","DOIUrl":null,"url":null,"abstract":"\n In epidemiological modelling, the instantaneous reproduction number, Rt, is important to understand the transmission dynamics of infectious diseases. Current Rt estimates often suffer from problems such as lagging, averaging and uncertainties demoting the usefulness of Rt. To address these problems, we propose a new method in the framework of sequential Bayesian inference where a Data Assimilation approach is taken for Rt estimation, resulting in the state-of-the-art ‘DARt’ system for Rt estimation. With DARt, the problem of time misalignment caused by lagging observations is tackled by incorporating observation delays into the joint inference of infections and Rt; the drawback of averaging is improved by instantaneous updating upon new observations and a model selection mechanism capturing abrupt changes caused by interventions; the uncertainty is quantified and reduced by employing Bayesian smoothing. We validate the performance of DARt through simulations and demonstrate its power in revealing the transmission dynamics of COVID-19.","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Revealing the Transmission Dynamics of COVID-19: A Bayesian Framework for Rt Estimation\",\"authors\":\"Xian Yang, Shuo Wang, Yuting Xing, Ling Li, R. Xu, Karl J. Friston, Yike Guo\",\"doi\":\"10.21203/RS.3.RS-137557/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In epidemiological modelling, the instantaneous reproduction number, Rt, is important to understand the transmission dynamics of infectious diseases. Current Rt estimates often suffer from problems such as lagging, averaging and uncertainties demoting the usefulness of Rt. To address these problems, we propose a new method in the framework of sequential Bayesian inference where a Data Assimilation approach is taken for Rt estimation, resulting in the state-of-the-art ‘DARt’ system for Rt estimation. With DARt, the problem of time misalignment caused by lagging observations is tackled by incorporating observation delays into the joint inference of infections and Rt; the drawback of averaging is improved by instantaneous updating upon new observations and a model selection mechanism capturing abrupt changes caused by interventions; the uncertainty is quantified and reduced by employing Bayesian smoothing. We validate the performance of DARt through simulations and demonstrate its power in revealing the transmission dynamics of COVID-19.\",\"PeriodicalId\":409996,\"journal\":{\"name\":\"arXiv: Applications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-137557/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-137557/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revealing the Transmission Dynamics of COVID-19: A Bayesian Framework for Rt Estimation
In epidemiological modelling, the instantaneous reproduction number, Rt, is important to understand the transmission dynamics of infectious diseases. Current Rt estimates often suffer from problems such as lagging, averaging and uncertainties demoting the usefulness of Rt. To address these problems, we propose a new method in the framework of sequential Bayesian inference where a Data Assimilation approach is taken for Rt estimation, resulting in the state-of-the-art ‘DARt’ system for Rt estimation. With DARt, the problem of time misalignment caused by lagging observations is tackled by incorporating observation delays into the joint inference of infections and Rt; the drawback of averaging is improved by instantaneous updating upon new observations and a model selection mechanism capturing abrupt changes caused by interventions; the uncertainty is quantified and reduced by employing Bayesian smoothing. We validate the performance of DARt through simulations and demonstrate its power in revealing the transmission dynamics of COVID-19.