不确定离散线性系统的鲁棒广义H2滤波

Xiao-Xiang Sun, Cuijuan An, S. Wang
{"title":"不确定离散线性系统的鲁棒广义H2滤波","authors":"Xiao-Xiang Sun, Cuijuan An, S. Wang","doi":"10.1109/CCDC.2010.5498136","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of robust generalized H2 filtering for discrete-time linear systems with polytopic uncertainties. Based on parameter-dependent Lyapunov functions combined with Finsler's lemma, new conditions for the solvability of the problem are given in terms of linear matrix inequalities (LMIs). Compared to the existing results, more slack variables are introduced to provide extra freedom for the generalized H2 optimization which lead to improving the performance and reducing the conservatism further. An example is give to illustrate the effectiveness of the proposed method.","PeriodicalId":227938,"journal":{"name":"2010 Chinese Control and Decision Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust generalized H2 filtering for uncertain discrete-time linear systems\",\"authors\":\"Xiao-Xiang Sun, Cuijuan An, S. Wang\",\"doi\":\"10.1109/CCDC.2010.5498136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of robust generalized H2 filtering for discrete-time linear systems with polytopic uncertainties. Based on parameter-dependent Lyapunov functions combined with Finsler's lemma, new conditions for the solvability of the problem are given in terms of linear matrix inequalities (LMIs). Compared to the existing results, more slack variables are introduced to provide extra freedom for the generalized H2 optimization which lead to improving the performance and reducing the conservatism further. An example is give to illustrate the effectiveness of the proposed method.\",\"PeriodicalId\":227938,\"journal\":{\"name\":\"2010 Chinese Control and Decision Conference\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Chinese Control and Decision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2010.5498136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2010.5498136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究具有多面体不确定性的离散线性系统的鲁棒广义H2滤波问题。基于参数相关的Lyapunov函数,结合Finsler引理,用线性矩阵不等式给出了问题可解性的新条件。与已有的结果相比,引入了更多的松弛变量,为广义H2优化提供了额外的自由度,从而进一步提高了性能,降低了保守性。算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust generalized H2 filtering for uncertain discrete-time linear systems
This paper considers the problem of robust generalized H2 filtering for discrete-time linear systems with polytopic uncertainties. Based on parameter-dependent Lyapunov functions combined with Finsler's lemma, new conditions for the solvability of the problem are given in terms of linear matrix inequalities (LMIs). Compared to the existing results, more slack variables are introduced to provide extra freedom for the generalized H2 optimization which lead to improving the performance and reducing the conservatism further. An example is give to illustrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信