雪雷达回波图层跟踪器:NASA冰桥行动雷达数据的深度神经网络

O. Ibikunle, Hara Madhav Talasila, D. Varshney, J. Paden, Jilu Li, M. Rahnemoonfar
{"title":"雪雷达回波图层跟踪器:NASA冰桥行动雷达数据的深度神经网络","authors":"O. Ibikunle, Hara Madhav Talasila, D. Varshney, J. Paden, Jilu Li, M. Rahnemoonfar","doi":"10.1109/RadarConf2351548.2023.10149734","DOIUrl":null,"url":null,"abstract":"This paper documents the performance of two deep learning models developed to automatically track internal layers in Snow Radar echograms. A novel iterative RowBlock approach is developed to circumvent the small training-data problem peculiar to radar data by recasting pixel-wise dense prediction problem as a multi-class classification task with millions of training data. The proposed models, Skip_MLP and LSTM_PE, achieved tracking accuracies of 81.2 % and 87.9%, respectively, on echograms from the dry snow zone in Greenland. Moreover, 96.7% and 97.3% of the errors are less than or equal to two pixels for both models respectively. The tracked layers were used to estimate annual accumulation over two decades and compared with Regional Atmosphere Model (MAR) estimates to yield a coefficient of determination of 0.943, thus validating this approach.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Snow Radar Echogram Layer Tracker: Deep Neural Networks for radar data from NASA Operation IceBridge\",\"authors\":\"O. Ibikunle, Hara Madhav Talasila, D. Varshney, J. Paden, Jilu Li, M. Rahnemoonfar\",\"doi\":\"10.1109/RadarConf2351548.2023.10149734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper documents the performance of two deep learning models developed to automatically track internal layers in Snow Radar echograms. A novel iterative RowBlock approach is developed to circumvent the small training-data problem peculiar to radar data by recasting pixel-wise dense prediction problem as a multi-class classification task with millions of training data. The proposed models, Skip_MLP and LSTM_PE, achieved tracking accuracies of 81.2 % and 87.9%, respectively, on echograms from the dry snow zone in Greenland. Moreover, 96.7% and 97.3% of the errors are less than or equal to two pixels for both models respectively. The tracked layers were used to estimate annual accumulation over two decades and compared with Regional Atmosphere Model (MAR) estimates to yield a coefficient of determination of 0.943, thus validating this approach.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文记录了两种深度学习模型的性能,用于自动跟踪雪雷达回波图中的内层。提出了一种新的迭代RowBlock方法,通过将逐像素密集预测问题重新转换为具有数百万个训练数据的多类分类任务,解决了雷达数据特有的小训练数据问题。所提出的Skip_MLP和LSTM_PE模型对格陵兰岛干雪区回波图的跟踪精度分别为81.2%和87.9%。两种模型分别有96.7%和97.3%的误差小于或等于2个像素。利用跟踪层估算了20多年来的年累积量,并与区域大气模式(MAR)估算值进行了比较,得出了0.943的决定系数,从而验证了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Snow Radar Echogram Layer Tracker: Deep Neural Networks for radar data from NASA Operation IceBridge
This paper documents the performance of two deep learning models developed to automatically track internal layers in Snow Radar echograms. A novel iterative RowBlock approach is developed to circumvent the small training-data problem peculiar to radar data by recasting pixel-wise dense prediction problem as a multi-class classification task with millions of training data. The proposed models, Skip_MLP and LSTM_PE, achieved tracking accuracies of 81.2 % and 87.9%, respectively, on echograms from the dry snow zone in Greenland. Moreover, 96.7% and 97.3% of the errors are less than or equal to two pixels for both models respectively. The tracked layers were used to estimate annual accumulation over two decades and compared with Regional Atmosphere Model (MAR) estimates to yield a coefficient of determination of 0.943, thus validating this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信