两种基于art的神经网络分层聚类的比较

G. Bartfai
{"title":"两种基于art的神经网络分层聚类的比较","authors":"G. Bartfai","doi":"10.1109/ANNES.1995.499445","DOIUrl":null,"url":null,"abstract":"The paper compares two modular neural network architectures, built up of adaptive resonance theory (ART) networks, that can develop stable two-level hierarchical clusterings of arbitrary sequences of binary input patterns. In particular, it contrasts the typical class hierarchies that the networks found on a machine learning benchmark database. It is proposed that the main difference between the two clusterings are the direct consequence of the existence or absence of an internal feedback mechanism and explicit associative links between a higher-level class and its sub-classes.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A comparison of two ART-based neural networks for hierarchical clustering\",\"authors\":\"G. Bartfai\",\"doi\":\"10.1109/ANNES.1995.499445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper compares two modular neural network architectures, built up of adaptive resonance theory (ART) networks, that can develop stable two-level hierarchical clusterings of arbitrary sequences of binary input patterns. In particular, it contrasts the typical class hierarchies that the networks found on a machine learning benchmark database. It is proposed that the main difference between the two clusterings are the direct consequence of the existence or absence of an internal feedback mechanism and explicit associative links between a higher-level class and its sub-classes.\",\"PeriodicalId\":123427,\"journal\":{\"name\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANNES.1995.499445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文比较了基于自适应共振理论(ART)网络的两种模块化神经网络结构,这两种神经网络结构可以对任意二进制输入模式序列进行稳定的两级分层聚类。特别是,它对比了网络在机器学习基准数据库上发现的典型类层次结构。这两种聚类之间的主要区别是内部反馈机制的存在或缺乏的直接结果,以及高层类与其子类之间明确的关联链接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of two ART-based neural networks for hierarchical clustering
The paper compares two modular neural network architectures, built up of adaptive resonance theory (ART) networks, that can develop stable two-level hierarchical clusterings of arbitrary sequences of binary input patterns. In particular, it contrasts the typical class hierarchies that the networks found on a machine learning benchmark database. It is proposed that the main difference between the two clusterings are the direct consequence of the existence or absence of an internal feedback mechanism and explicit associative links between a higher-level class and its sub-classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信