基于模型强化学习的浮选工业过程最优控制

Runda Jia, Xuli Chen, Jun Zheng, Gang Yu
{"title":"基于模型强化学习的浮选工业过程最优控制","authors":"Runda Jia, Xuli Chen, Jun Zheng, Gang Yu","doi":"10.1109/IAI55780.2022.9976694","DOIUrl":null,"url":null,"abstract":"In this paper, the optimal control of the flotation industrial process (FIP) is studied. The flotation process uses differences in the physical and chemical properties of mineral surfaces to selectively attach minerals to air bubbles, and separate useful from useless minerals. To optimize control of the process, we use the model-based reinforcement learning (MBRL) method to design the optimal controller for the flotation process. A case study on the flotation mechanism model verifies the efficiency of the proposed method. The results show that the MBRL method can learn the optimal control policy with fewer episodes.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Control of Flotation Industrial Process Using Model-based Reinforcement Learning\",\"authors\":\"Runda Jia, Xuli Chen, Jun Zheng, Gang Yu\",\"doi\":\"10.1109/IAI55780.2022.9976694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the optimal control of the flotation industrial process (FIP) is studied. The flotation process uses differences in the physical and chemical properties of mineral surfaces to selectively attach minerals to air bubbles, and separate useful from useless minerals. To optimize control of the process, we use the model-based reinforcement learning (MBRL) method to design the optimal controller for the flotation process. A case study on the flotation mechanism model verifies the efficiency of the proposed method. The results show that the MBRL method can learn the optimal control policy with fewer episodes.\",\"PeriodicalId\":138951,\"journal\":{\"name\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI55780.2022.9976694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了浮选工业过程的最优控制问题。浮选过程利用矿物表面物理和化学性质的差异,选择性地将矿物附着在气泡上,并将有用的矿物与无用的矿物分离出来。为了优化浮选过程的控制,采用基于模型的强化学习(MBRL)方法设计浮选过程的最优控制器。通过浮选机理模型的实例研究,验证了该方法的有效性。结果表明,MBRL方法可以用更少的事件学习到最优控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Control of Flotation Industrial Process Using Model-based Reinforcement Learning
In this paper, the optimal control of the flotation industrial process (FIP) is studied. The flotation process uses differences in the physical and chemical properties of mineral surfaces to selectively attach minerals to air bubbles, and separate useful from useless minerals. To optimize control of the process, we use the model-based reinforcement learning (MBRL) method to design the optimal controller for the flotation process. A case study on the flotation mechanism model verifies the efficiency of the proposed method. The results show that the MBRL method can learn the optimal control policy with fewer episodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信