Boussinesq波动方程的有限元解

J. Akpobi, E. Akpobi
{"title":"Boussinesq波动方程的有限元解","authors":"J. Akpobi, E. Akpobi","doi":"10.4314/JONAMP.V11I1.40215","DOIUrl":null,"url":null,"abstract":"In this work, we investigate a Boussinesq-type flow model for nonlinear dispersive waves by developing a computational model based on the finite element discretisation technique. Hermite interpolation functions were used to interpolate approximation elements. The system is modeled using a time dependent equation. Solution to the model is obtained, through a combination of two different schemes namely: a time approximation scheme (the Newmark Method) and the eigenvalue finite element method. Using this schemes, discrete solutions of the model at different time steps, were obtained. Graphical illustrations of solutions for the transient displacements at the center and right end of the rod are presented. The results obtained are very accurate and the model efficient. JONAMP Vol. 11 2007: pp. 223-238","PeriodicalId":402697,"journal":{"name":"Journal of the Nigerian Association of Mathematical Physics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element solution of the Boussinesq wave equation\",\"authors\":\"J. Akpobi, E. Akpobi\",\"doi\":\"10.4314/JONAMP.V11I1.40215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate a Boussinesq-type flow model for nonlinear dispersive waves by developing a computational model based on the finite element discretisation technique. Hermite interpolation functions were used to interpolate approximation elements. The system is modeled using a time dependent equation. Solution to the model is obtained, through a combination of two different schemes namely: a time approximation scheme (the Newmark Method) and the eigenvalue finite element method. Using this schemes, discrete solutions of the model at different time steps, were obtained. Graphical illustrations of solutions for the transient displacements at the center and right end of the rod are presented. The results obtained are very accurate and the model efficient. JONAMP Vol. 11 2007: pp. 223-238\",\"PeriodicalId\":402697,\"journal\":{\"name\":\"Journal of the Nigerian Association of Mathematical Physics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Association of Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/JONAMP.V11I1.40215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Association of Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/JONAMP.V11I1.40215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们通过建立基于有限元离散化技术的计算模型来研究非线性色散波的boussinesq型流动模型。采用Hermite插值函数对逼近单元进行插值。该系统采用时间相关方程建模。通过结合两种不同的方案,即时间逼近方案(Newmark法)和特征值有限元法,得到了模型的解。利用该格式,得到了模型在不同时间步长的离散解。给出了杆的中心和右端瞬态位移解的图解。所得结果非常准确,该模型是有效的。JONAMP卷11 2007:pp. 223-238
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element solution of the Boussinesq wave equation
In this work, we investigate a Boussinesq-type flow model for nonlinear dispersive waves by developing a computational model based on the finite element discretisation technique. Hermite interpolation functions were used to interpolate approximation elements. The system is modeled using a time dependent equation. Solution to the model is obtained, through a combination of two different schemes namely: a time approximation scheme (the Newmark Method) and the eigenvalue finite element method. Using this schemes, discrete solutions of the model at different time steps, were obtained. Graphical illustrations of solutions for the transient displacements at the center and right end of the rod are presented. The results obtained are very accurate and the model efficient. JONAMP Vol. 11 2007: pp. 223-238
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信