基于自动语义分类的大规模卫星图像浏览

A. Parulekar, R. Datta, Jia Li, J.Z. Wang
{"title":"基于自动语义分类的大规模卫星图像浏览","authors":"A. Parulekar, R. Datta, Jia Li, J.Z. Wang","doi":"10.1109/ICCV.2005.257","DOIUrl":null,"url":null,"abstract":"We approach the problem of large-scale satellite image browsing from a content-based retrieval and semantic categorization perspective. A two-stage method for query based automatic retrieval of satellite image patches is proposed. The semantic category of query patches are determined and patches from that category are ranked based on an image similarity measure. Semantic categorization is done by a learning approach involving the two-dimensional multi-resolution hidden Markov model (2-D MHMM). Patches that do not belong to any trained category are handled using a support vector machine (SVM) based classifier. Experiments yield promising results in modeling semantic categories within satellite images using 2-D MHMM, producing accurate and convenient browsing. We also show that prior semantic categorization improves retrieval performance.","PeriodicalId":432729,"journal":{"name":"Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Large-scale Satellite Image Browsing using Automatic Semantic Categorization\",\"authors\":\"A. Parulekar, R. Datta, Jia Li, J.Z. Wang\",\"doi\":\"10.1109/ICCV.2005.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We approach the problem of large-scale satellite image browsing from a content-based retrieval and semantic categorization perspective. A two-stage method for query based automatic retrieval of satellite image patches is proposed. The semantic category of query patches are determined and patches from that category are ranked based on an image similarity measure. Semantic categorization is done by a learning approach involving the two-dimensional multi-resolution hidden Markov model (2-D MHMM). Patches that do not belong to any trained category are handled using a support vector machine (SVM) based classifier. Experiments yield promising results in modeling semantic categories within satellite images using 2-D MHMM, producing accurate and convenient browsing. We also show that prior semantic categorization improves retrieval performance.\",\"PeriodicalId\":432729,\"journal\":{\"name\":\"Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2005.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2005.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们从基于内容的检索和语义分类的角度来研究大规模卫星图像浏览问题。提出了一种基于查询的两阶段卫星图像斑块自动检索方法。确定查询补丁的语义类别,并根据图像相似性度量对该类别的补丁进行排序。语义分类是通过二维多分辨率隐马尔可夫模型(2-D MHMM)的学习方法完成的。不属于任何训练类别的补丁使用基于支持向量机(SVM)的分类器进行处理。实验结果表明,利用二维MHMM对卫星图像中的语义类别进行建模,可以产生准确和方便的浏览。我们还表明,先验语义分类提高了检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale Satellite Image Browsing using Automatic Semantic Categorization
We approach the problem of large-scale satellite image browsing from a content-based retrieval and semantic categorization perspective. A two-stage method for query based automatic retrieval of satellite image patches is proposed. The semantic category of query patches are determined and patches from that category are ranked based on an image similarity measure. Semantic categorization is done by a learning approach involving the two-dimensional multi-resolution hidden Markov model (2-D MHMM). Patches that do not belong to any trained category are handled using a support vector machine (SVM) based classifier. Experiments yield promising results in modeling semantic categories within satellite images using 2-D MHMM, producing accurate and convenient browsing. We also show that prior semantic categorization improves retrieval performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信