转子-定子摩擦过程中干鞭现象的分析研究

Aman K. Srivastava, Anurag Kumar, M. Tiwari, Akhilendra Singh
{"title":"转子-定子摩擦过程中干鞭现象的分析研究","authors":"Aman K. Srivastava, Anurag Kumar, M. Tiwari, Akhilendra Singh","doi":"10.1115/detc2021-70228","DOIUrl":null,"url":null,"abstract":"\n Rotor-Stator Rub is a rare but catastrophic phenomenon and in most cases leads to failure of Gas Turbine Engines. Asynchronous rub namely Partial Rub and Dry whip are two of the most common observed rub related phenomena. Dry whip leads to pure backward whirl and instability. This paper studies the dry whirl analytically to determine the boundaries of instability and establish expressions for nonlinear vibrations in case of dry whip. First, Nonlinear Natural Frequency has been defined for a rotor-stator rub system and expression for natural motion of the system has been formulated. Next, Pure rolling of rotor on stator has been used as a condition to approximate the nonlinear system to find out the dependence of dry whip frequency on the parameters such as stiffness, damping ratio, coefficient of friction and spin speed of the rotor. Moreover, a validation of the obtained frequencies and amplitudes obtained analytically has been performed through the simulation of rotor stator rub system using RK-4 integration technique. Furthermore, this study offers insight into the frequencies that are present in the Radial motion of the rotor and its source of origin. The radial displacement of the rotor has harmonics which are the result of interaction between the rotor speed and the backward whirl frequency causing dry whip.","PeriodicalId":425665,"journal":{"name":"Volume 10: 33rd Conference on Mechanical Vibration and Sound (VIB)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Study of Dry Whip Phenomena During Rotor-Stator Rub\",\"authors\":\"Aman K. Srivastava, Anurag Kumar, M. Tiwari, Akhilendra Singh\",\"doi\":\"10.1115/detc2021-70228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rotor-Stator Rub is a rare but catastrophic phenomenon and in most cases leads to failure of Gas Turbine Engines. Asynchronous rub namely Partial Rub and Dry whip are two of the most common observed rub related phenomena. Dry whip leads to pure backward whirl and instability. This paper studies the dry whirl analytically to determine the boundaries of instability and establish expressions for nonlinear vibrations in case of dry whip. First, Nonlinear Natural Frequency has been defined for a rotor-stator rub system and expression for natural motion of the system has been formulated. Next, Pure rolling of rotor on stator has been used as a condition to approximate the nonlinear system to find out the dependence of dry whip frequency on the parameters such as stiffness, damping ratio, coefficient of friction and spin speed of the rotor. Moreover, a validation of the obtained frequencies and amplitudes obtained analytically has been performed through the simulation of rotor stator rub system using RK-4 integration technique. Furthermore, this study offers insight into the frequencies that are present in the Radial motion of the rotor and its source of origin. The radial displacement of the rotor has harmonics which are the result of interaction between the rotor speed and the backward whirl frequency causing dry whip.\",\"PeriodicalId\":425665,\"journal\":{\"name\":\"Volume 10: 33rd Conference on Mechanical Vibration and Sound (VIB)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: 33rd Conference on Mechanical Vibration and Sound (VIB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-70228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 33rd Conference on Mechanical Vibration and Sound (VIB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-70228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

转子-定子摩擦是一种罕见的灾难性现象,在大多数情况下会导致燃气轮机故障。异步摩擦即局部摩擦和干鞭摩擦是两种最常见的摩擦相关现象。干鞭导致纯粹的向后旋转和不稳定。本文对干旋流进行了解析研究,确定了干旋流的失稳边界,建立了干鞭作用下的非线性振动表达式。首先,定义了转子-定子摩擦系统的非线性固有频率,并给出了系统的固有运动表达式。其次,以转子与定子的纯滚动为条件对非线性系统进行近似,找出干鞭频率与转子刚度、阻尼比、摩擦系数、转速等参数的关系。利用RK-4积分技术,通过对转子-定子摩擦系统的仿真,对解析得到的频率和幅值进行了验证。此外,这项研究提供了深入了解的频率是存在于转子的径向运动和其来源的起源。转子径向位移存在谐波,谐波是转子转速与后向旋转频率相互作用的结果,引起干鞭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Study of Dry Whip Phenomena During Rotor-Stator Rub
Rotor-Stator Rub is a rare but catastrophic phenomenon and in most cases leads to failure of Gas Turbine Engines. Asynchronous rub namely Partial Rub and Dry whip are two of the most common observed rub related phenomena. Dry whip leads to pure backward whirl and instability. This paper studies the dry whirl analytically to determine the boundaries of instability and establish expressions for nonlinear vibrations in case of dry whip. First, Nonlinear Natural Frequency has been defined for a rotor-stator rub system and expression for natural motion of the system has been formulated. Next, Pure rolling of rotor on stator has been used as a condition to approximate the nonlinear system to find out the dependence of dry whip frequency on the parameters such as stiffness, damping ratio, coefficient of friction and spin speed of the rotor. Moreover, a validation of the obtained frequencies and amplitudes obtained analytically has been performed through the simulation of rotor stator rub system using RK-4 integration technique. Furthermore, this study offers insight into the frequencies that are present in the Radial motion of the rotor and its source of origin. The radial displacement of the rotor has harmonics which are the result of interaction between the rotor speed and the backward whirl frequency causing dry whip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信