{"title":"迈向光子和电子计算的真正整合","authors":"M. McLaren","doi":"10.1145/2212908.2212910","DOIUrl":null,"url":null,"abstract":"The long heralded transition of photonic technology from a rack to rack interconnect to an integral part of the system architecture is underway. Silicon photonics, where the optical communications devices are fabricated using the same materials and processes as CMOS logic, will allow 3D or monolithically integrated devices to be created, minimizing the overhead for moving between the electronic and photonic domains. System architects will then be free to exploit the unique characteristics of photonic communications such as broadband switching and distance independence. Photonic interconnects are very sensitive to the performance of connectors, and so may favor architectures where redundancy and reconfiguration are used in preference to replacement.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards truly integrated photonic and electronic computing\",\"authors\":\"M. McLaren\",\"doi\":\"10.1145/2212908.2212910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The long heralded transition of photonic technology from a rack to rack interconnect to an integral part of the system architecture is underway. Silicon photonics, where the optical communications devices are fabricated using the same materials and processes as CMOS logic, will allow 3D or monolithically integrated devices to be created, minimizing the overhead for moving between the electronic and photonic domains. System architects will then be free to exploit the unique characteristics of photonic communications such as broadband switching and distance independence. Photonic interconnects are very sensitive to the performance of connectors, and so may favor architectures where redundancy and reconfiguration are used in preference to replacement.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2212908.2212910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2212908.2212910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards truly integrated photonic and electronic computing
The long heralded transition of photonic technology from a rack to rack interconnect to an integral part of the system architecture is underway. Silicon photonics, where the optical communications devices are fabricated using the same materials and processes as CMOS logic, will allow 3D or monolithically integrated devices to be created, minimizing the overhead for moving between the electronic and photonic domains. System architects will then be free to exploit the unique characteristics of photonic communications such as broadband switching and distance independence. Photonic interconnects are very sensitive to the performance of connectors, and so may favor architectures where redundancy and reconfiguration are used in preference to replacement.