同心粘弹性体低速头部碰撞中脑运动分析

P. Thapa, Shahab Mansoor Baghaei, A. Sadegh
{"title":"同心粘弹性体低速头部碰撞中脑运动分析","authors":"P. Thapa, Shahab Mansoor Baghaei, A. Sadegh","doi":"10.1115/imece2021-73590","DOIUrl":null,"url":null,"abstract":"\n Mild traumatic brain injury (mTBI) and concussion could occur in vehicular accidents, contact sports, or other physical traumas when the head is subjected to high linear or angular acceleration. Understanding the physiology and dynamics of such events has attracted many researchers’ attention. Due to the hidden risks in such events, it is very important to understand the cause and effect of the relative motion between the brain and skull and the implications of normal and shear stresses in the meningeal region.\n Since the early 70’s to date wide variations of experimental, analytical, and numerical models has been developed to analyze multilayer spherical head impact model to quantify the dynamic response of the human head due to blunt impact and explain the process and likely cause of mild traumatic brain injuries. There are many high-fidelity finite element models and research studies of the various head models, but very limited analytical models to date for parametric studies. Analytical models of head impact play a vital role in predicting relative displacement between skull and brain, transmitted forces, post-impact velocity, and acceleration of the head system. However, to define a reliable mathematical model which can illustrate the mechanisms of motion and deformation of the brain within the skull requires knowledge of dynamics of a multibody system, material properties, boundary conditions at the brain–skull interface, and experimental data or FEM simulation for validation.\n In this paper, a mathematical model of the brain and meningeal layers, as two separate viscoelastic materials that are modeled using a Kelvin–Voigt model, have been investigated and the motion of the brain relative to the skull during blunt head impacts have been analyzed. Specifically, the model consists of three concentric spherical mediums including a spherical shell (skull), a thin spherical layer (meningeal layer), and a spherical mass (brain). The interface between these spherical mediums consists of springs and dashpots representing stiffness and viscoelasticity of the skull, meningeal layer, and the brain. This model of the head is initially at rest and subjected to an impulse load. The equations of motion for this multi-body system were obtained, solved, and validated by performing a lumped mechanical model and the multibody dynamics finite element analysis simulation. Multiple parametric studies were performed to determine the maximum amplitude of impact force for which there is a contact between the skull and the brain.","PeriodicalId":314012,"journal":{"name":"Volume 5: Biomedical and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Impact Analysis of the Brain Motion in Low-Velocity Head Impacts Using Concentric Viscoelastic Bodies\",\"authors\":\"P. Thapa, Shahab Mansoor Baghaei, A. Sadegh\",\"doi\":\"10.1115/imece2021-73590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mild traumatic brain injury (mTBI) and concussion could occur in vehicular accidents, contact sports, or other physical traumas when the head is subjected to high linear or angular acceleration. Understanding the physiology and dynamics of such events has attracted many researchers’ attention. Due to the hidden risks in such events, it is very important to understand the cause and effect of the relative motion between the brain and skull and the implications of normal and shear stresses in the meningeal region.\\n Since the early 70’s to date wide variations of experimental, analytical, and numerical models has been developed to analyze multilayer spherical head impact model to quantify the dynamic response of the human head due to blunt impact and explain the process and likely cause of mild traumatic brain injuries. There are many high-fidelity finite element models and research studies of the various head models, but very limited analytical models to date for parametric studies. Analytical models of head impact play a vital role in predicting relative displacement between skull and brain, transmitted forces, post-impact velocity, and acceleration of the head system. However, to define a reliable mathematical model which can illustrate the mechanisms of motion and deformation of the brain within the skull requires knowledge of dynamics of a multibody system, material properties, boundary conditions at the brain–skull interface, and experimental data or FEM simulation for validation.\\n In this paper, a mathematical model of the brain and meningeal layers, as two separate viscoelastic materials that are modeled using a Kelvin–Voigt model, have been investigated and the motion of the brain relative to the skull during blunt head impacts have been analyzed. Specifically, the model consists of three concentric spherical mediums including a spherical shell (skull), a thin spherical layer (meningeal layer), and a spherical mass (brain). The interface between these spherical mediums consists of springs and dashpots representing stiffness and viscoelasticity of the skull, meningeal layer, and the brain. This model of the head is initially at rest and subjected to an impulse load. The equations of motion for this multi-body system were obtained, solved, and validated by performing a lumped mechanical model and the multibody dynamics finite element analysis simulation. Multiple parametric studies were performed to determine the maximum amplitude of impact force for which there is a contact between the skull and the brain.\",\"PeriodicalId\":314012,\"journal\":{\"name\":\"Volume 5: Biomedical and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Biomedical and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-73590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Biomedical and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-73590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

轻度创伤性脑损伤(mTBI)和脑震荡可能发生在交通事故、身体接触运动或其他身体创伤中,当头部受到高线性或角加速度时。了解这些事件的生理学和动力学引起了许多研究人员的注意。由于此类事件的潜在风险,了解脑和颅骨之间相对运动的原因和影响以及脑膜区正常和剪切应力的影响非常重要。自70年代初至今,各种各样的实验、分析和数值模型已经被开发出来,用于分析多层球形头部撞击模型,以量化人类头部在钝器撞击下的动态反应,并解释轻度创伤性脑损伤的过程和可能的原因。目前已有许多高保真的有限元模型和各种头部模型的研究,但用于参数化研究的分析模型非常有限。头部碰撞的分析模型在预测颅骨与大脑之间的相对位移、传递力、碰撞后速度和头部系统的加速度方面起着至关重要的作用。然而,要定义一个可靠的数学模型来说明颅骨内大脑的运动和变形机制,需要了解多体系统的动力学、材料特性、脑-颅骨界面的边界条件,以及实验数据或FEM模拟验证。在本文中,研究了脑和脑膜层的数学模型,作为两种独立的粘弹性材料,使用Kelvin-Voigt模型建模,并分析了钝性头部撞击时大脑相对于头骨的运动。具体来说,该模型由三种同心球形介质组成,包括球壳(颅骨)、薄球形层(脑膜层)和球形团块(脑)。这些球形介质之间的界面由弹簧和阻尼器组成,代表颅骨、脑膜层和大脑的刚度和粘弹性。这个头部模型最初处于静止状态,并受到脉冲载荷的影响。通过建立集总力学模型和多体动力学有限元分析仿真,得到了该多体系统的运动方程,并对其进行了求解和验证。进行了多参数研究,以确定颅骨和大脑之间有接触的最大冲击力幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Impact Analysis of the Brain Motion in Low-Velocity Head Impacts Using Concentric Viscoelastic Bodies
Mild traumatic brain injury (mTBI) and concussion could occur in vehicular accidents, contact sports, or other physical traumas when the head is subjected to high linear or angular acceleration. Understanding the physiology and dynamics of such events has attracted many researchers’ attention. Due to the hidden risks in such events, it is very important to understand the cause and effect of the relative motion between the brain and skull and the implications of normal and shear stresses in the meningeal region. Since the early 70’s to date wide variations of experimental, analytical, and numerical models has been developed to analyze multilayer spherical head impact model to quantify the dynamic response of the human head due to blunt impact and explain the process and likely cause of mild traumatic brain injuries. There are many high-fidelity finite element models and research studies of the various head models, but very limited analytical models to date for parametric studies. Analytical models of head impact play a vital role in predicting relative displacement between skull and brain, transmitted forces, post-impact velocity, and acceleration of the head system. However, to define a reliable mathematical model which can illustrate the mechanisms of motion and deformation of the brain within the skull requires knowledge of dynamics of a multibody system, material properties, boundary conditions at the brain–skull interface, and experimental data or FEM simulation for validation. In this paper, a mathematical model of the brain and meningeal layers, as two separate viscoelastic materials that are modeled using a Kelvin–Voigt model, have been investigated and the motion of the brain relative to the skull during blunt head impacts have been analyzed. Specifically, the model consists of three concentric spherical mediums including a spherical shell (skull), a thin spherical layer (meningeal layer), and a spherical mass (brain). The interface between these spherical mediums consists of springs and dashpots representing stiffness and viscoelasticity of the skull, meningeal layer, and the brain. This model of the head is initially at rest and subjected to an impulse load. The equations of motion for this multi-body system were obtained, solved, and validated by performing a lumped mechanical model and the multibody dynamics finite element analysis simulation. Multiple parametric studies were performed to determine the maximum amplitude of impact force for which there is a contact between the skull and the brain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信