基数齐次集合系统,拟阵中的环,以及相关的多面体

M. Grötschel
{"title":"基数齐次集合系统,拟阵中的环,以及相关的多面体","authors":"M. Grötschel","doi":"10.1137/1.9780898718805.ch8","DOIUrl":null,"url":null,"abstract":"A subset ${\\cal C}$ of the power set of a finite set $E$ is called cardinality homogeneous if, whenever ${\\cal C}$ contains some set $F$, ${\\cal C}$ contains all subsets of $E$ of cardinality $|F|$. Examples of such set systems ${\\cal C}$ are the sets of circuits and the sets of cycles of uniform matroids and the sets of all even or of all odd cardinality subsets of $E$. With each cardinality homogeneous set system ${\\cal C}$, we associate the polytope $P({\\cal C})$, the convex hull of the incidence vectors of all sets in ${\\cal C}$, and provide a complete and nonredundant linear description of $P({\\cal C})$. We show that a greedy algorithm optimizes any linear function over $P({\\cal C})$, give an explicit optimum solution of the dual linear program, and provide a polynomial time separation algorithm for the class of polytopes of type $P({\\cal C})$.","PeriodicalId":416196,"journal":{"name":"The Sharpest Cut","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Cardinality Homogeneous Set Systems, Cycles in Matroids, and Associated Polytopes\",\"authors\":\"M. Grötschel\",\"doi\":\"10.1137/1.9780898718805.ch8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subset ${\\\\cal C}$ of the power set of a finite set $E$ is called cardinality homogeneous if, whenever ${\\\\cal C}$ contains some set $F$, ${\\\\cal C}$ contains all subsets of $E$ of cardinality $|F|$. Examples of such set systems ${\\\\cal C}$ are the sets of circuits and the sets of cycles of uniform matroids and the sets of all even or of all odd cardinality subsets of $E$. With each cardinality homogeneous set system ${\\\\cal C}$, we associate the polytope $P({\\\\cal C})$, the convex hull of the incidence vectors of all sets in ${\\\\cal C}$, and provide a complete and nonredundant linear description of $P({\\\\cal C})$. We show that a greedy algorithm optimizes any linear function over $P({\\\\cal C})$, give an explicit optimum solution of the dual linear program, and provide a polynomial time separation algorithm for the class of polytopes of type $P({\\\\cal C})$.\",\"PeriodicalId\":416196,\"journal\":{\"name\":\"The Sharpest Cut\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Sharpest Cut\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9780898718805.ch8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sharpest Cut","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9780898718805.ch8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

有限集$E$的幂集${\cal C}$的子集${\cal C}$称为基数齐次,如果当${\cal C}$包含某个集合$F$时,${\cal C}$包含基数$|F|$ E$的所有子集。这样的集合系统${\cal}$的例子是一致拟阵的电路集和循环集以及$E$的所有偶数或所有奇基数子集的集合。对于每一个基数齐次集合系统${\cal C}$,我们关联了多面体$P({\cal C})$、${\cal C}$中所有集合的关联向量的凸包,并给出了$P({\cal C})$的一个完备的、非冗余的线性描述。我们证明了贪心算法对P({\cal C})$上的任何线性函数都是最优的,给出了对偶线性规划的显式最优解,并给出了一类P({\cal C})$的多项式时间分离算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardinality Homogeneous Set Systems, Cycles in Matroids, and Associated Polytopes
A subset ${\cal C}$ of the power set of a finite set $E$ is called cardinality homogeneous if, whenever ${\cal C}$ contains some set $F$, ${\cal C}$ contains all subsets of $E$ of cardinality $|F|$. Examples of such set systems ${\cal C}$ are the sets of circuits and the sets of cycles of uniform matroids and the sets of all even or of all odd cardinality subsets of $E$. With each cardinality homogeneous set system ${\cal C}$, we associate the polytope $P({\cal C})$, the convex hull of the incidence vectors of all sets in ${\cal C}$, and provide a complete and nonredundant linear description of $P({\cal C})$. We show that a greedy algorithm optimizes any linear function over $P({\cal C})$, give an explicit optimum solution of the dual linear program, and provide a polynomial time separation algorithm for the class of polytopes of type $P({\cal C})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信