基于软计算的航空铝合金焊件参数优化设计

J. Jhang
{"title":"基于软计算的航空铝合金焊件参数优化设计","authors":"J. Jhang","doi":"10.1109/ICNC.2011.6022158","DOIUrl":null,"url":null,"abstract":"This research proposes an economic and effective experimental design method of multiple characteristics to deal with the parameter design problem with many continuous parameters and levels. It uses TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ANN (Artificial Neural Network) to train the optimal function framework of parameter design. It combines SC (Soft Computing) of SA (Simulated Anneal) and GA (Genetic Algorithm) to search the optimal parameters combination for the optimal parameter of aerospace aluminum alloy weldment. To improve previous experimental methods for multiple characteristics, this research method employs SA to search the optimal parameter such that the potential parameter can be evaluated more completely and objectively. Additionally, the model can learn the relationship between the welding parameters and the quality responses of different aluminum alloy materials to facilitate the future applications in the decision-making of parameter settings for automatic welding equipment. The research results can be presented to the industries as a reference, and improve the product quality and welding efficiency to relevant welding industries.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"23 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The optimal parameter design of aerospace aluminum alloy weldment via soft computing\",\"authors\":\"J. Jhang\",\"doi\":\"10.1109/ICNC.2011.6022158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes an economic and effective experimental design method of multiple characteristics to deal with the parameter design problem with many continuous parameters and levels. It uses TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ANN (Artificial Neural Network) to train the optimal function framework of parameter design. It combines SC (Soft Computing) of SA (Simulated Anneal) and GA (Genetic Algorithm) to search the optimal parameters combination for the optimal parameter of aerospace aluminum alloy weldment. To improve previous experimental methods for multiple characteristics, this research method employs SA to search the optimal parameter such that the potential parameter can be evaluated more completely and objectively. Additionally, the model can learn the relationship between the welding parameters and the quality responses of different aluminum alloy materials to facilitate the future applications in the decision-making of parameter settings for automatic welding equipment. The research results can be presented to the industries as a reference, and improve the product quality and welding efficiency to relevant welding industries.\",\"PeriodicalId\":299503,\"journal\":{\"name\":\"2011 Seventh International Conference on Natural Computation\",\"volume\":\"23 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Seventh International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6022158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种经济有效的多特征试验设计方法,以解决具有多连续参数和水平的参数设计问题。利用TOPSIS (Order Preference Technique of Similarity to Ideal Solution)和ANN (Artificial Neural Network)训练参数设计的最优函数框架。将模拟退火软计算与遗传算法相结合,搜索航空铝合金焊件最优参数组合。为了改进以往的多特性实验方法,本研究方法采用SA来搜索最优参数,从而更全面、客观地评价潜在参数。此外,该模型还可以学习到不同铝合金材料的焊接参数与质量响应之间的关系,便于今后在自动焊接设备参数设置决策中的应用。研究成果可供相关行业参考,提高相关焊接行业的产品质量和焊接效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The optimal parameter design of aerospace aluminum alloy weldment via soft computing
This research proposes an economic and effective experimental design method of multiple characteristics to deal with the parameter design problem with many continuous parameters and levels. It uses TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ANN (Artificial Neural Network) to train the optimal function framework of parameter design. It combines SC (Soft Computing) of SA (Simulated Anneal) and GA (Genetic Algorithm) to search the optimal parameters combination for the optimal parameter of aerospace aluminum alloy weldment. To improve previous experimental methods for multiple characteristics, this research method employs SA to search the optimal parameter such that the potential parameter can be evaluated more completely and objectively. Additionally, the model can learn the relationship between the welding parameters and the quality responses of different aluminum alloy materials to facilitate the future applications in the decision-making of parameter settings for automatic welding equipment. The research results can be presented to the industries as a reference, and improve the product quality and welding efficiency to relevant welding industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信