基于维纳滤波聚焦算法的有限视点投影层析图像重建

R. Zdunek, Zhaoshui He, A. Cichocki
{"title":"基于维纳滤波聚焦算法的有限视点投影层析图像重建","authors":"R. Zdunek, Zhaoshui He, A. Cichocki","doi":"10.1109/ISBI.2008.4541109","DOIUrl":null,"url":null,"abstract":"In tomographic image reconstruction from limited-view projections the underlying inverse problem is ill-posed with the rank-deficient system matrix. The minimal-norm least squares solution may considerably differs from the true solution, and hence a priori knowledge is needed to improve the reconstruction. In our approach, we assume that the true image presents sparse features with uniform spacial smoothness. The sparsity constraints are imposed with the lscrp diversity measure that is minimized with the FOCUSS algorithm. The spacial smoothness is enforced with the adaptive Wiener noise removing implemented in each FOCUSS iterations. The simulation results demonstrate the benefits of the proposed approach.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tomographic image reconstruction from limited-view projections with Wiener filtered focuss algorithm\",\"authors\":\"R. Zdunek, Zhaoshui He, A. Cichocki\",\"doi\":\"10.1109/ISBI.2008.4541109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In tomographic image reconstruction from limited-view projections the underlying inverse problem is ill-posed with the rank-deficient system matrix. The minimal-norm least squares solution may considerably differs from the true solution, and hence a priori knowledge is needed to improve the reconstruction. In our approach, we assume that the true image presents sparse features with uniform spacial smoothness. The sparsity constraints are imposed with the lscrp diversity measure that is minimized with the FOCUSS algorithm. The spacial smoothness is enforced with the adaptive Wiener noise removing implemented in each FOCUSS iterations. The simulation results demonstrate the benefits of the proposed approach.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在有限视投影层析图像重建中,存在秩不足系统矩阵的不适定问题。最小范数最小二乘解可能与真实解相差很大,因此需要先验知识来改进重建。在我们的方法中,我们假设真实图像具有均匀空间平滑的稀疏特征。稀疏性约束由lscrp分集度量施加,该分集度量通过focus算法最小化。通过在每次focus迭代中实现自适应维纳噪声去除来增强空间平滑性。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tomographic image reconstruction from limited-view projections with Wiener filtered focuss algorithm
In tomographic image reconstruction from limited-view projections the underlying inverse problem is ill-posed with the rank-deficient system matrix. The minimal-norm least squares solution may considerably differs from the true solution, and hence a priori knowledge is needed to improve the reconstruction. In our approach, we assume that the true image presents sparse features with uniform spacial smoothness. The sparsity constraints are imposed with the lscrp diversity measure that is minimized with the FOCUSS algorithm. The spacial smoothness is enforced with the adaptive Wiener noise removing implemented in each FOCUSS iterations. The simulation results demonstrate the benefits of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信