时间演化条件下的多传感器融合方法

R. Luo, W.S. Yang, M.-H. Lin
{"title":"时间演化条件下的多传感器融合方法","authors":"R. Luo, W.S. Yang, M.-H. Lin","doi":"10.1109/ISIC.1988.65423","DOIUrl":null,"url":null,"abstract":"A paradigm for optimum estimation of fused multiple sensor data is developed in order to best use the sensor information in the time evolving environment. Two basic approaches have been developed: dynamic moving quadratic curve fitting and weighted least mean square error. These two approaches are shown to be advantageous in terms of accuracy, speed, and versatility. The theoretical frameworks presented are supported by sets of simulation data.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approaches on multi-sensor fusion under time-evolving conditions\",\"authors\":\"R. Luo, W.S. Yang, M.-H. Lin\",\"doi\":\"10.1109/ISIC.1988.65423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A paradigm for optimum estimation of fused multiple sensor data is developed in order to best use the sensor information in the time evolving environment. Two basic approaches have been developed: dynamic moving quadratic curve fitting and weighted least mean square error. These two approaches are shown to be advantageous in terms of accuracy, speed, and versatility. The theoretical frameworks presented are supported by sets of simulation data.<<ETX>>\",\"PeriodicalId\":155616,\"journal\":{\"name\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1988.65423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了在时间变化的环境中更好地利用传感器信息,提出了一种融合多传感器数据的最优估计方法。提出了两种基本方法:动态移动二次曲线拟合和加权最小均方误差。这两种方法在准确性、速度和通用性方面具有优势。本文提出的理论框架得到了一系列仿真数据的支持
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approaches on multi-sensor fusion under time-evolving conditions
A paradigm for optimum estimation of fused multiple sensor data is developed in order to best use the sensor information in the time evolving environment. Two basic approaches have been developed: dynamic moving quadratic curve fitting and weighted least mean square error. These two approaches are shown to be advantageous in terms of accuracy, speed, and versatility. The theoretical frameworks presented are supported by sets of simulation data.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信