基于独立分量分析和相关向量机的脑电多想象任务分类

Shanting Zhang, Rui Xu, Abdelkader Nasreddine Belkacem, Duk Shin, Kun Wang, Zhongpeng Wang, Lu Yu, Zhifeng Qiao, Changming Wang, Chao Chen
{"title":"基于独立分量分析和相关向量机的脑电多想象任务分类","authors":"Shanting Zhang, Rui Xu, Abdelkader Nasreddine Belkacem, Duk Shin, Kun Wang, Zhongpeng Wang, Lu Yu, Zhifeng Qiao, Changming Wang, Chao Chen","doi":"10.1109/IMBIOC.2019.8777887","DOIUrl":null,"url":null,"abstract":"To solve the problem of feature extraction in braincomputer interface (BCI), the position, size and direction of dipole are located by using dipole localization method, so as to locate the active part of advanced nerve activity and remove a series of physiological and electrical artifacts such as electro-ophthalmogram. The common space pattern and correlation vector machine are used to extract the effective components of EEG signals and classify multiple motor imagery tasks. The results show that the combination of EEG dipole localization and common spatial pattern can effectively improve the signal-to-noise ratio of EEG signals and extract more obvious features. The correlation vector machine provides better classification results and is an effective method to complete the classification and recognition of motor imagery signals.","PeriodicalId":171472,"journal":{"name":"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of EEG Multiple Imagination Tasks Based on Independent Component Analysis and Relevant Vector Machines\",\"authors\":\"Shanting Zhang, Rui Xu, Abdelkader Nasreddine Belkacem, Duk Shin, Kun Wang, Zhongpeng Wang, Lu Yu, Zhifeng Qiao, Changming Wang, Chao Chen\",\"doi\":\"10.1109/IMBIOC.2019.8777887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem of feature extraction in braincomputer interface (BCI), the position, size and direction of dipole are located by using dipole localization method, so as to locate the active part of advanced nerve activity and remove a series of physiological and electrical artifacts such as electro-ophthalmogram. The common space pattern and correlation vector machine are used to extract the effective components of EEG signals and classify multiple motor imagery tasks. The results show that the combination of EEG dipole localization and common spatial pattern can effectively improve the signal-to-noise ratio of EEG signals and extract more obvious features. The correlation vector machine provides better classification results and is an effective method to complete the classification and recognition of motor imagery signals.\",\"PeriodicalId\":171472,\"journal\":{\"name\":\"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMBIOC.2019.8777887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBIOC.2019.8777887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了解决脑机接口(BCI)中的特征提取问题,采用偶极子定位方法对偶极子的位置、大小和方向进行定位,从而定位高级神经活动的活跃部分,去除眼电图等一系列生理和电伪影。利用公共空间模式和相关向量机提取脑电信号的有效成分,对多个运动图像任务进行分类。结果表明,脑电偶极子定位与共同空间模式相结合可以有效提高脑电信号的信噪比,提取出更明显的特征。相关向量机具有较好的分类效果,是完成运动图像信号分类识别的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of EEG Multiple Imagination Tasks Based on Independent Component Analysis and Relevant Vector Machines
To solve the problem of feature extraction in braincomputer interface (BCI), the position, size and direction of dipole are located by using dipole localization method, so as to locate the active part of advanced nerve activity and remove a series of physiological and electrical artifacts such as electro-ophthalmogram. The common space pattern and correlation vector machine are used to extract the effective components of EEG signals and classify multiple motor imagery tasks. The results show that the combination of EEG dipole localization and common spatial pattern can effectively improve the signal-to-noise ratio of EEG signals and extract more obvious features. The correlation vector machine provides better classification results and is an effective method to complete the classification and recognition of motor imagery signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信