Pix2pix网络用于指纹纹理图像的合成

Jader dos Santos Teles Cordeiro, J. H. Saito
{"title":"Pix2pix网络用于指纹纹理图像的合成","authors":"Jader dos Santos Teles Cordeiro, J. H. Saito","doi":"10.5753/wvc.2021.18882","DOIUrl":null,"url":null,"abstract":"GANs (Generative Adversarial Networks) were proposed to generate realistic synthetic images. In this work, we will discuss the use of GANs as alternative reconstruction of different fingerprint images from the original ones. The samples result in the same person fingerprint but obtained with other textures. Thus, it is intended to contribute to improving the method to increase databases with new samples, incorporating textures, when the quantities are insufficient for any purpose. To verify the similarity of the synthesized images with the original ones, a convolutional Xception network and the RMSE metric are used. The results obtained with fingerprint images of 3 persons, 20 of each finger, and 4 different textures, showed the tradeoff between similarity, recognizability, and the number of epochs of the Pix2pix training.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pix2pix network for fingerprint texture image synthesis\",\"authors\":\"Jader dos Santos Teles Cordeiro, J. H. Saito\",\"doi\":\"10.5753/wvc.2021.18882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GANs (Generative Adversarial Networks) were proposed to generate realistic synthetic images. In this work, we will discuss the use of GANs as alternative reconstruction of different fingerprint images from the original ones. The samples result in the same person fingerprint but obtained with other textures. Thus, it is intended to contribute to improving the method to increase databases with new samples, incorporating textures, when the quantities are insufficient for any purpose. To verify the similarity of the synthesized images with the original ones, a convolutional Xception network and the RMSE metric are used. The results obtained with fingerprint images of 3 persons, 20 of each finger, and 4 different textures, showed the tradeoff between similarity, recognizability, and the number of epochs of the Pix2pix training.\",\"PeriodicalId\":311431,\"journal\":{\"name\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVII Workshop de Visão Computacional (WVC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wvc.2021.18882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了生成逼真的合成图像,提出了生成对抗网络(GANs)。在这项工作中,我们将讨论使用gan作为原始指纹图像的替代重建。这些样本的结果是同一个人的指纹,但使用了其他纹理。因此,当数量不足以用于任何目的时,它旨在有助于改进方法,以增加包含纹理的新样本的数据库。为了验证合成图像与原始图像的相似性,使用了卷积异常网络和RMSE度量。使用3个人,每个手指20个,4种不同纹理的指纹图像得到的结果显示了Pix2pix训练在相似性、可识别性和epoch数之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pix2pix network for fingerprint texture image synthesis
GANs (Generative Adversarial Networks) were proposed to generate realistic synthetic images. In this work, we will discuss the use of GANs as alternative reconstruction of different fingerprint images from the original ones. The samples result in the same person fingerprint but obtained with other textures. Thus, it is intended to contribute to improving the method to increase databases with new samples, incorporating textures, when the quantities are insufficient for any purpose. To verify the similarity of the synthesized images with the original ones, a convolutional Xception network and the RMSE metric are used. The results obtained with fingerprint images of 3 persons, 20 of each finger, and 4 different textures, showed the tradeoff between similarity, recognizability, and the number of epochs of the Pix2pix training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信