最后采用自适应多重重要抽样进行采集

Yusuke Tokuyoshi, Shinji Ogaki, Sebastian Schoellhammer
{"title":"最后采用自适应多重重要抽样进行采集","authors":"Yusuke Tokuyoshi, Shinji Ogaki, Sebastian Schoellhammer","doi":"10.1145/1900354.1900407","DOIUrl":null,"url":null,"abstract":"We propose an efficient final gathering technique using adaptive multiple importance sampling (AMIS) [Cornuet et al. 2009] for a scene containing a highly intense spot of light. AMIS is aimed at optimally recycling past simulations in an iterative importance sampling scheme. The difference to earlier adaptive importance sampling methods is that the past weighting functions are recomputed by multiple importance sampling [Veach 1997] at each iteration. In AMIS, the probability distribution function (PDF) at the tth iteration is parameterized by θt. The next parameter θt+1 is determined by estimating the optimal value from past samples (described in Section 2.2). The performance of AMIS depends on a sampling strategy, i.e. the choice of a PDF. This poster suggests a suitable PDF for final gathering. Our method increases error in some case, however, it is effective in the case of a scene contains a highly intense spot of light compared to the classic method.","PeriodicalId":286776,"journal":{"name":"ACM SIGGRAPH ASIA 2010 Posters","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Final gathering using adaptive multiple importance sampling\",\"authors\":\"Yusuke Tokuyoshi, Shinji Ogaki, Sebastian Schoellhammer\",\"doi\":\"10.1145/1900354.1900407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an efficient final gathering technique using adaptive multiple importance sampling (AMIS) [Cornuet et al. 2009] for a scene containing a highly intense spot of light. AMIS is aimed at optimally recycling past simulations in an iterative importance sampling scheme. The difference to earlier adaptive importance sampling methods is that the past weighting functions are recomputed by multiple importance sampling [Veach 1997] at each iteration. In AMIS, the probability distribution function (PDF) at the tth iteration is parameterized by θt. The next parameter θt+1 is determined by estimating the optimal value from past samples (described in Section 2.2). The performance of AMIS depends on a sampling strategy, i.e. the choice of a PDF. This poster suggests a suitable PDF for final gathering. Our method increases error in some case, however, it is effective in the case of a scene contains a highly intense spot of light compared to the classic method.\",\"PeriodicalId\":286776,\"journal\":{\"name\":\"ACM SIGGRAPH ASIA 2010 Posters\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH ASIA 2010 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1900354.1900407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH ASIA 2010 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1900354.1900407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种有效的最终采集技术,使用自适应多重重要性采样(AMIS) [Cornuet et al. 2009],用于包含高强度光斑的场景。AMIS的目的是在迭代重要抽样方案中最优地回收过去的模拟。与早期的自适应重要性抽样方法的不同之处在于,在每次迭代时,通过多次重要性抽样重新计算过去的权重函数[Veach 1997]。在AMIS中,第n次迭代时的概率分布函数(PDF)用θt参数化。下一个参数θt+1是通过从过去的样本中估计最优值来确定的(见第2.2节)。AMIS的性能取决于采样策略,即PDF的选择。这张海报为最后的聚会推荐了一个合适的PDF。我们的方法在某些情况下会增加误差,然而,与经典方法相比,它在场景中包含高度强烈的光点的情况下是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Final gathering using adaptive multiple importance sampling
We propose an efficient final gathering technique using adaptive multiple importance sampling (AMIS) [Cornuet et al. 2009] for a scene containing a highly intense spot of light. AMIS is aimed at optimally recycling past simulations in an iterative importance sampling scheme. The difference to earlier adaptive importance sampling methods is that the past weighting functions are recomputed by multiple importance sampling [Veach 1997] at each iteration. In AMIS, the probability distribution function (PDF) at the tth iteration is parameterized by θt. The next parameter θt+1 is determined by estimating the optimal value from past samples (described in Section 2.2). The performance of AMIS depends on a sampling strategy, i.e. the choice of a PDF. This poster suggests a suitable PDF for final gathering. Our method increases error in some case, however, it is effective in the case of a scene contains a highly intense spot of light compared to the classic method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信