从手绘草图中重建3D模型的无监督学习

Lingjing Wang, Cheng Qian, Jifei Wang, Yi Fang
{"title":"从手绘草图中重建3D模型的无监督学习","authors":"Lingjing Wang, Cheng Qian, Jifei Wang, Yi Fang","doi":"10.1145/3240508.3240699","DOIUrl":null,"url":null,"abstract":"3D objects modeling has gained considerable attention in the visual computing community. We propose a low-cost unsupervised learning model for 3D objects reconstruction from hand-drawn sketches. Recent advancements in deep learning opened new opportunities to learn high-quality 3D objects from 2D sketches via supervised networks. However, the limited availability of labeled 2D hand-drawn sketches data (i.e. sketches and its corresponding 3D ground truth models) hinders the training process of supervised methods. In this paper, driven by a novel design of combination of retrieval and reconstruction process, we developed a learning paradigm to reconstruct 3D objects from hand-drawn sketches, without the use of well-labeled hand-drawn sketch data during the entire training process. Specifically, the paradigm begins with the training of an adaption network via autoencoder with adversarial loss, embedding the unpaired 2D rendered image domain with the hand-drawn sketch domain to a shared latent vector space. Then from the embedding latent space, for each testing sketch image, we retrieve a few (e.g. five) nearest neighbors from the training 3D data set as prior knowledge for a 3D Generative Adversarial Network. Our experiments verify our network's robust and superior performance in handling 3D volumetric object generation from single hand-drawn sketch without requiring any 3D ground truth labels.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Unsupervised Learning of 3D Model Reconstruction from Hand-Drawn Sketches\",\"authors\":\"Lingjing Wang, Cheng Qian, Jifei Wang, Yi Fang\",\"doi\":\"10.1145/3240508.3240699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D objects modeling has gained considerable attention in the visual computing community. We propose a low-cost unsupervised learning model for 3D objects reconstruction from hand-drawn sketches. Recent advancements in deep learning opened new opportunities to learn high-quality 3D objects from 2D sketches via supervised networks. However, the limited availability of labeled 2D hand-drawn sketches data (i.e. sketches and its corresponding 3D ground truth models) hinders the training process of supervised methods. In this paper, driven by a novel design of combination of retrieval and reconstruction process, we developed a learning paradigm to reconstruct 3D objects from hand-drawn sketches, without the use of well-labeled hand-drawn sketch data during the entire training process. Specifically, the paradigm begins with the training of an adaption network via autoencoder with adversarial loss, embedding the unpaired 2D rendered image domain with the hand-drawn sketch domain to a shared latent vector space. Then from the embedding latent space, for each testing sketch image, we retrieve a few (e.g. five) nearest neighbors from the training 3D data set as prior knowledge for a 3D Generative Adversarial Network. Our experiments verify our network's robust and superior performance in handling 3D volumetric object generation from single hand-drawn sketch without requiring any 3D ground truth labels.\",\"PeriodicalId\":339857,\"journal\":{\"name\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240508.3240699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

三维对象建模在视觉计算界得到了相当大的关注。我们提出了一种低成本的无监督学习模型,用于从手绘草图中重建3D物体。深度学习的最新进展为通过监督网络从2D草图中学习高质量的3D对象提供了新的机会。然而,有标记的二维手绘草图数据(即草图及其相应的三维地面真值模型)的有限可用性阻碍了监督方法的训练过程。在本文中,我们采用了一种新颖的检索和重建过程相结合的设计,开发了一种从手绘草图中重建三维物体的学习范式,在整个训练过程中不使用标记好的手绘草图数据。具体来说,该范式首先通过具有对抗性损失的自编码器训练自适应网络,将未配对的2D渲染图像域与手绘草图域嵌入到共享潜在向量空间。然后,从嵌入的潜在空间中,对于每个测试草图图像,我们从训练3D数据集中检索几个(例如五个)最近的邻居作为3D生成对抗网络的先验知识。我们的实验验证了我们的网络在处理单个手绘草图的3D体积对象生成方面的鲁棒性和卓越性能,而不需要任何3D地面真值标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Learning of 3D Model Reconstruction from Hand-Drawn Sketches
3D objects modeling has gained considerable attention in the visual computing community. We propose a low-cost unsupervised learning model for 3D objects reconstruction from hand-drawn sketches. Recent advancements in deep learning opened new opportunities to learn high-quality 3D objects from 2D sketches via supervised networks. However, the limited availability of labeled 2D hand-drawn sketches data (i.e. sketches and its corresponding 3D ground truth models) hinders the training process of supervised methods. In this paper, driven by a novel design of combination of retrieval and reconstruction process, we developed a learning paradigm to reconstruct 3D objects from hand-drawn sketches, without the use of well-labeled hand-drawn sketch data during the entire training process. Specifically, the paradigm begins with the training of an adaption network via autoencoder with adversarial loss, embedding the unpaired 2D rendered image domain with the hand-drawn sketch domain to a shared latent vector space. Then from the embedding latent space, for each testing sketch image, we retrieve a few (e.g. five) nearest neighbors from the training 3D data set as prior knowledge for a 3D Generative Adversarial Network. Our experiments verify our network's robust and superior performance in handling 3D volumetric object generation from single hand-drawn sketch without requiring any 3D ground truth labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信