一种改进的抗噪细化框架

Yuanxu Liu, Jun Ma, X. Ren, V. Tsviatkou, Hao Li
{"title":"一种改进的抗噪细化框架","authors":"Yuanxu Liu, Jun Ma, X. Ren, V. Tsviatkou, Hao Li","doi":"10.1109/CCISP55629.2022.9974468","DOIUrl":null,"url":null,"abstract":"We proposed a modified thinning framework that based on the scale space technique to automatically extract skeletons from images without manual-tuning. The proposed framework can increase the robustness of the thinning algorithm, it not only can suppress the boundary noise, but also can alleviate the inner noise. These two types of noise generally cause the appearance of the abundant of the unwanted branches in the outcome of the thinning algorithm, which arise the difficulties of the later recognition or matching process in skeleton. The experiment has proved the proposed framework has better performance when comparing with the other existing methods.","PeriodicalId":431851,"journal":{"name":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Thinning Framework Against Noise\",\"authors\":\"Yuanxu Liu, Jun Ma, X. Ren, V. Tsviatkou, Hao Li\",\"doi\":\"10.1109/CCISP55629.2022.9974468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a modified thinning framework that based on the scale space technique to automatically extract skeletons from images without manual-tuning. The proposed framework can increase the robustness of the thinning algorithm, it not only can suppress the boundary noise, but also can alleviate the inner noise. These two types of noise generally cause the appearance of the abundant of the unwanted branches in the outcome of the thinning algorithm, which arise the difficulties of the later recognition or matching process in skeleton. The experiment has proved the proposed framework has better performance when comparing with the other existing methods.\",\"PeriodicalId\":431851,\"journal\":{\"name\":\"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCISP55629.2022.9974468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCISP55629.2022.9974468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种改进的基于尺度空间技术的细化框架,可以在不需要手动调整的情况下自动提取图像中的骨架。该框架不仅可以抑制边界噪声,还可以减轻内部噪声,提高了稀疏算法的鲁棒性。这两种类型的噪声通常会导致稀疏算法的结果中出现大量不需要的分支,从而给后续的骨架识别或匹配过程带来困难。实验结果表明,该框架与现有方法相比具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Thinning Framework Against Noise
We proposed a modified thinning framework that based on the scale space technique to automatically extract skeletons from images without manual-tuning. The proposed framework can increase the robustness of the thinning algorithm, it not only can suppress the boundary noise, but also can alleviate the inner noise. These two types of noise generally cause the appearance of the abundant of the unwanted branches in the outcome of the thinning algorithm, which arise the difficulties of the later recognition or matching process in skeleton. The experiment has proved the proposed framework has better performance when comparing with the other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信