pv气动机械系统的一维解析模型

Ronen S. Lautman, Liron Shani, B. Nishri
{"title":"pv气动机械系统的一维解析模型","authors":"Ronen S. Lautman, Liron Shani, B. Nishri","doi":"10.2495/AFM180221","DOIUrl":null,"url":null,"abstract":"The current work presents a 1D analytic model for a PV aeromechanical system and compares it with a 3D CFD model. The 1D model is based on the analogy between airflow and electric current. A PV aeromechanical system enables accurate positioning of thin, flexible substrates by creating an air cushion between the substrate and an accurate, rigid surface, having bi-directional aeromechanical spring-like behavior. Nozzle can be described as the relation they allow between flow (Q) and pressure drop (∆p): R ∝ ∆p/Qn where n depends on the characteristic behavior and (in this work) is between 1 and 2. The 1D model is computationally much cheaper than the 3D CFD model. Although the 1D model requires one CFD 3D model analysis for quantifying the exact resistance in the air cushion, it allows very fast calculations of performance when varying the other parameters of air gap, pressure/vacuum supply, and flowrate. The difference between 1D analytic model and full CFD analysis, in terms of air gap stiffness results was approximately 3%.","PeriodicalId":261351,"journal":{"name":"Advances in Fluid Mechanics XII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1D ANALYTIC MODEL FOR PV AEROMECHANICAL SYSTEMS\",\"authors\":\"Ronen S. Lautman, Liron Shani, B. Nishri\",\"doi\":\"10.2495/AFM180221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work presents a 1D analytic model for a PV aeromechanical system and compares it with a 3D CFD model. The 1D model is based on the analogy between airflow and electric current. A PV aeromechanical system enables accurate positioning of thin, flexible substrates by creating an air cushion between the substrate and an accurate, rigid surface, having bi-directional aeromechanical spring-like behavior. Nozzle can be described as the relation they allow between flow (Q) and pressure drop (∆p): R ∝ ∆p/Qn where n depends on the characteristic behavior and (in this work) is between 1 and 2. The 1D model is computationally much cheaper than the 3D CFD model. Although the 1D model requires one CFD 3D model analysis for quantifying the exact resistance in the air cushion, it allows very fast calculations of performance when varying the other parameters of air gap, pressure/vacuum supply, and flowrate. The difference between 1D analytic model and full CFD analysis, in terms of air gap stiffness results was approximately 3%.\",\"PeriodicalId\":261351,\"journal\":{\"name\":\"Advances in Fluid Mechanics XII\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Fluid Mechanics XII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/AFM180221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Fluid Mechanics XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/AFM180221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了PV气动力学系统的一维解析模型,并与三维CFD模型进行了比较。一维模型是基于气流和电流的类比。PV气动机械系统通过在基板和精确的刚性表面之间创建气垫,具有双向气动机械弹簧特性,可以精确定位薄而柔性的基板。喷嘴可以用流量(Q)和压降(∆p)之间的关系来描述:R∝∆p/Qn,其中n取决于特征行为,(在本工作中)介于1和2之间。1D模型在计算上比3D CFD模型便宜得多。虽然1D模型需要一个CFD 3D模型分析来量化气垫中的精确阻力,但当改变气隙、压力/真空供应和流量等其他参数时,它可以非常快速地计算出性能。在气隙刚度方面,一维分析模型与全CFD分析结果的差异约为3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
1D ANALYTIC MODEL FOR PV AEROMECHANICAL SYSTEMS
The current work presents a 1D analytic model for a PV aeromechanical system and compares it with a 3D CFD model. The 1D model is based on the analogy between airflow and electric current. A PV aeromechanical system enables accurate positioning of thin, flexible substrates by creating an air cushion between the substrate and an accurate, rigid surface, having bi-directional aeromechanical spring-like behavior. Nozzle can be described as the relation they allow between flow (Q) and pressure drop (∆p): R ∝ ∆p/Qn where n depends on the characteristic behavior and (in this work) is between 1 and 2. The 1D model is computationally much cheaper than the 3D CFD model. Although the 1D model requires one CFD 3D model analysis for quantifying the exact resistance in the air cushion, it allows very fast calculations of performance when varying the other parameters of air gap, pressure/vacuum supply, and flowrate. The difference between 1D analytic model and full CFD analysis, in terms of air gap stiffness results was approximately 3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信