K. Mizanian, Reza Hajisheykhi, M. Baharloo, A. Jahangir
{"title":"RACE:大规模无线传感器网络的实时调度策略和通信体系结构","authors":"K. Mizanian, Reza Hajisheykhi, M. Baharloo, A. Jahangir","doi":"10.1109/CNSR.2009.84","DOIUrl":null,"url":null,"abstract":"In wireless sensor networks (WSN), individual sensor nodes are inherently unreliable and have very limited capabilities to ensure real-time properties. In fact, one of the most predominant limitations in wireless sensor networks is energy consumption, which hinders the capacity of the network to provide real-time guarantees (e.g. low duty-cycles, low transmission range). Many approaches have been proposed to deal with energy/latency trade-offs, but they are likely to be insufficient for the applications where reduced delay guarantee is the main concern. We present and evaluate a packet scheduling policy and routing algorithm called RACE that inherently accounts for time constraints. We show that this algorithm is particularly suitable for communication in sensor networks in which a large number of wireless devices are seamlessly integrated into a physical space to perform real-time monitoring and control. Detailed simulations of representative sensor network environments demonstrate that RACE significantly reduces the end-to-end deadline and miss ratio in the sensor network. Also RACE will balance load and energy consumption of network and life time of network will be increased.","PeriodicalId":103090,"journal":{"name":"2009 Seventh Annual Communication Networks and Services Research Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"RACE: A Real-Time Scheduling Policy and Communication Architecture for Large-Scale Wireless Sensor Networks\",\"authors\":\"K. Mizanian, Reza Hajisheykhi, M. Baharloo, A. Jahangir\",\"doi\":\"10.1109/CNSR.2009.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wireless sensor networks (WSN), individual sensor nodes are inherently unreliable and have very limited capabilities to ensure real-time properties. In fact, one of the most predominant limitations in wireless sensor networks is energy consumption, which hinders the capacity of the network to provide real-time guarantees (e.g. low duty-cycles, low transmission range). Many approaches have been proposed to deal with energy/latency trade-offs, but they are likely to be insufficient for the applications where reduced delay guarantee is the main concern. We present and evaluate a packet scheduling policy and routing algorithm called RACE that inherently accounts for time constraints. We show that this algorithm is particularly suitable for communication in sensor networks in which a large number of wireless devices are seamlessly integrated into a physical space to perform real-time monitoring and control. Detailed simulations of representative sensor network environments demonstrate that RACE significantly reduces the end-to-end deadline and miss ratio in the sensor network. Also RACE will balance load and energy consumption of network and life time of network will be increased.\",\"PeriodicalId\":103090,\"journal\":{\"name\":\"2009 Seventh Annual Communication Networks and Services Research Conference\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh Annual Communication Networks and Services Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNSR.2009.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh Annual Communication Networks and Services Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSR.2009.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RACE: A Real-Time Scheduling Policy and Communication Architecture for Large-Scale Wireless Sensor Networks
In wireless sensor networks (WSN), individual sensor nodes are inherently unreliable and have very limited capabilities to ensure real-time properties. In fact, one of the most predominant limitations in wireless sensor networks is energy consumption, which hinders the capacity of the network to provide real-time guarantees (e.g. low duty-cycles, low transmission range). Many approaches have been proposed to deal with energy/latency trade-offs, but they are likely to be insufficient for the applications where reduced delay guarantee is the main concern. We present and evaluate a packet scheduling policy and routing algorithm called RACE that inherently accounts for time constraints. We show that this algorithm is particularly suitable for communication in sensor networks in which a large number of wireless devices are seamlessly integrated into a physical space to perform real-time monitoring and control. Detailed simulations of representative sensor network environments demonstrate that RACE significantly reduces the end-to-end deadline and miss ratio in the sensor network. Also RACE will balance load and energy consumption of network and life time of network will be increased.