利用蚂蚁Flash算法实现斑马鱼全脑显微镜的可变形注册

G. Fleishman, Miaomiao Zhang, N. Tustison, Isabel Espinosa-Medina, Yu Mu, Khaled Khairy, M. Ahrens
{"title":"利用蚂蚁Flash算法实现斑马鱼全脑显微镜的可变形注册","authors":"G. Fleishman, Miaomiao Zhang, N. Tustison, Isabel Espinosa-Medina, Yu Mu, Khaled Khairy, M. Ahrens","doi":"10.1109/ISBI.2019.8759549","DOIUrl":null,"url":null,"abstract":"Recent advancements in microscopy, protein engineering, and genetics have rendered the larval zerbrafish a powerful model system for which whole brain, real time, functional neuroimaging at cellular resolution is accessible. Supplementing functional data with additional modalities in the same fish such as structural connectivity and transcriptomics will enable interpretation of structure-function relationships across the entire brains of individual animals. However, proper identification of corresponding cells in the large image volumes produced depends on accurate and efficient deformable registration. To address this challenge, we implemented the Fourier-approximated Lie Algebras for Shooting (FLASH) algorithm within the well-known Advanced Normalization Tools (ANTs) package. This combines the speed of FLASH with the extensive set of image matching functionals and multi-staging multi-resolution capabilities of ANTs. We registered longitudinal data from nine fish, using a line that uniquely identifies subsets of neurons in an independent channel. We validate our approach by demonstrating accurate cell-to-cell correspondence while requiring significantly less time and memory than the Symmetric Normalization (SyN) implementation in ANTs, and without compromising the theoretical foundations of the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformable Registration of Whole Brain Zebrafish Microscopy Using an Implementation of the Flash Algorithm Within Ants\",\"authors\":\"G. Fleishman, Miaomiao Zhang, N. Tustison, Isabel Espinosa-Medina, Yu Mu, Khaled Khairy, M. Ahrens\",\"doi\":\"10.1109/ISBI.2019.8759549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in microscopy, protein engineering, and genetics have rendered the larval zerbrafish a powerful model system for which whole brain, real time, functional neuroimaging at cellular resolution is accessible. Supplementing functional data with additional modalities in the same fish such as structural connectivity and transcriptomics will enable interpretation of structure-function relationships across the entire brains of individual animals. However, proper identification of corresponding cells in the large image volumes produced depends on accurate and efficient deformable registration. To address this challenge, we implemented the Fourier-approximated Lie Algebras for Shooting (FLASH) algorithm within the well-known Advanced Normalization Tools (ANTs) package. This combines the speed of FLASH with the extensive set of image matching functionals and multi-staging multi-resolution capabilities of ANTs. We registered longitudinal data from nine fish, using a line that uniquely identifies subsets of neurons in an independent channel. We validate our approach by demonstrating accurate cell-to-cell correspondence while requiring significantly less time and memory than the Symmetric Normalization (SyN) implementation in ANTs, and without compromising the theoretical foundations of the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近在显微镜、蛋白质工程和遗传学方面的进步,使斑马鱼幼虫成为一个强大的模型系统,可以在细胞分辨率下获得全脑、实时、功能性神经成像。在同一鱼类中补充其他模式的功能数据,如结构连通性和转录组学,将有助于解释个体动物整个大脑的结构-功能关系。然而,在产生的大量图像中正确识别相应的细胞取决于准确和有效的可变形配准。为了解决这一挑战,我们在著名的Advanced Normalization Tools (ANTs)包中实现了fourier -approximate Lie Algebras for Shooting (FLASH)算法。这将FLASH的速度与广泛的图像匹配功能和ant的多阶段多分辨率功能相结合。我们记录了9条鱼的纵向数据,使用一条线在一个独立的通道中唯一地识别神经元子集。我们通过展示准确的细胞间对应来验证我们的方法,同时比ant中的对称归一化(SyN)实现所需的时间和内存要少得多,并且不会损害大变形微分同构度量映射(LDDMM)模型的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformable Registration of Whole Brain Zebrafish Microscopy Using an Implementation of the Flash Algorithm Within Ants
Recent advancements in microscopy, protein engineering, and genetics have rendered the larval zerbrafish a powerful model system for which whole brain, real time, functional neuroimaging at cellular resolution is accessible. Supplementing functional data with additional modalities in the same fish such as structural connectivity and transcriptomics will enable interpretation of structure-function relationships across the entire brains of individual animals. However, proper identification of corresponding cells in the large image volumes produced depends on accurate and efficient deformable registration. To address this challenge, we implemented the Fourier-approximated Lie Algebras for Shooting (FLASH) algorithm within the well-known Advanced Normalization Tools (ANTs) package. This combines the speed of FLASH with the extensive set of image matching functionals and multi-staging multi-resolution capabilities of ANTs. We registered longitudinal data from nine fish, using a line that uniquely identifies subsets of neurons in an independent channel. We validate our approach by demonstrating accurate cell-to-cell correspondence while requiring significantly less time and memory than the Symmetric Normalization (SyN) implementation in ANTs, and without compromising the theoretical foundations of the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信