{"title":"志村上的EKOR地层具有旁消减性","authors":"Jens Hesse","doi":"10.25534/TUPRINTS-00011543","DOIUrl":null,"url":null,"abstract":"We investigate the geometry of the special fiber of the integral model of a Shimura variety with parahoric level at a given prime place. To be more precise, we deal with the EKOR stratification which interpolates between the Ekedahl-Oort and Kottwitz-Rapoport stratifications. In the Siegel case we give a geometric description by suitably generalizing the theory of $G$-zips of Moonen, Wedhorn, Pink and Ziegler to our context.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"EKOR strata on Shimura varieties with parahoric reduction\",\"authors\":\"Jens Hesse\",\"doi\":\"10.25534/TUPRINTS-00011543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the geometry of the special fiber of the integral model of a Shimura variety with parahoric level at a given prime place. To be more precise, we deal with the EKOR stratification which interpolates between the Ekedahl-Oort and Kottwitz-Rapoport stratifications. In the Siegel case we give a geometric description by suitably generalizing the theory of $G$-zips of Moonen, Wedhorn, Pink and Ziegler to our context.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25534/TUPRINTS-00011543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25534/TUPRINTS-00011543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EKOR strata on Shimura varieties with parahoric reduction
We investigate the geometry of the special fiber of the integral model of a Shimura variety with parahoric level at a given prime place. To be more precise, we deal with the EKOR stratification which interpolates between the Ekedahl-Oort and Kottwitz-Rapoport stratifications. In the Siegel case we give a geometric description by suitably generalizing the theory of $G$-zips of Moonen, Wedhorn, Pink and Ziegler to our context.