网络流量数据的无限可分级联分析

D. Veitch, P. Abry, P. Flandrin, P. Chainais
{"title":"网络流量数据的无限可分级联分析","authors":"D. Veitch, P. Abry, P. Flandrin, P. Chainais","doi":"10.1109/ICASSP.2000.861931","DOIUrl":null,"url":null,"abstract":"Infinitely divisible cascades are a model class previously introduced in the field of turbulence to describe the statistics of velocity fields. In this paper, using a wavelet reformulation of the cascades, we investigate their ability to analyze band model scaling properties of data and compare their fundamental ingredients to those of other scaling model classes such as self-similar and multifractal processes. We also propose an estimation procedure for the propagator or kernel of the cascades. Finally the cascade model is successfully applied to describe Internet TCP network traffic data, bringing new insights into their scaling properties and revealing a pitfall in existing techniques.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Infinitely divisible cascade analysis of network traffic data\",\"authors\":\"D. Veitch, P. Abry, P. Flandrin, P. Chainais\",\"doi\":\"10.1109/ICASSP.2000.861931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infinitely divisible cascades are a model class previously introduced in the field of turbulence to describe the statistics of velocity fields. In this paper, using a wavelet reformulation of the cascades, we investigate their ability to analyze band model scaling properties of data and compare their fundamental ingredients to those of other scaling model classes such as self-similar and multifractal processes. We also propose an estimation procedure for the propagator or kernel of the cascades. Finally the cascade model is successfully applied to describe Internet TCP network traffic data, bringing new insights into their scaling properties and revealing a pitfall in existing techniques.\",\"PeriodicalId\":164817,\"journal\":{\"name\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2000.861931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.861931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

无限可分级联是湍流领域中用来描述速度场统计特性的一类模型。在本文中,我们使用级联的小波重构,研究了它们分析数据带模型标度特性的能力,并将它们的基本成分与其他标度模型类(如自相似和多重分形过程)的基本成分进行了比较。我们还提出了级联的传播子或核的估计方法。最后,将级联模型成功地应用于描述Internet TCP网络流量数据,对其缩放特性有了新的认识,并揭示了现有技术中的一个缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely divisible cascade analysis of network traffic data
Infinitely divisible cascades are a model class previously introduced in the field of turbulence to describe the statistics of velocity fields. In this paper, using a wavelet reformulation of the cascades, we investigate their ability to analyze band model scaling properties of data and compare their fundamental ingredients to those of other scaling model classes such as self-similar and multifractal processes. We also propose an estimation procedure for the propagator or kernel of the cascades. Finally the cascade model is successfully applied to describe Internet TCP network traffic data, bringing new insights into their scaling properties and revealing a pitfall in existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信