信息占有的随机自约性和零知识交互证明

M. Tompa, H. Woll
{"title":"信息占有的随机自约性和零知识交互证明","authors":"M. Tompa, H. Woll","doi":"10.1109/SFCS.1987.49","DOIUrl":null,"url":null,"abstract":"The notion of a zero knowledge interactive proof that one party \"knows\" some secret information is explored. It is shown that any \"random self-reducible\" problem has a zero knowledge interactive proof of this sort. The zero knowledge interactive proofs for graph isomorphism, quadratic residuosity, and \"knowledge\" of discrete logarithms all follow as special cases. Based on these results, new zero knowledge interactive proofs are exhibited for \"knowledge\" of the factorization of an integer, nonmembership in cyclic subgroups of Zp*, and determining whether an element generates Zp*. None of these proofs relies on any unproven assumptions.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"240","resultStr":"{\"title\":\"Random self-reducibility and zero knowledge interactive proofs of possession of information\",\"authors\":\"M. Tompa, H. Woll\",\"doi\":\"10.1109/SFCS.1987.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of a zero knowledge interactive proof that one party \\\"knows\\\" some secret information is explored. It is shown that any \\\"random self-reducible\\\" problem has a zero knowledge interactive proof of this sort. The zero knowledge interactive proofs for graph isomorphism, quadratic residuosity, and \\\"knowledge\\\" of discrete logarithms all follow as special cases. Based on these results, new zero knowledge interactive proofs are exhibited for \\\"knowledge\\\" of the factorization of an integer, nonmembership in cyclic subgroups of Zp*, and determining whether an element generates Zp*. None of these proofs relies on any unproven assumptions.\",\"PeriodicalId\":153779,\"journal\":{\"name\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"240\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1987.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 240

摘要

探讨了零知识交互式证明的概念,即一方“知道”某些秘密信息。证明了任何“随机自约”问题都具有这种类型的零知识交互证明。图同构、二次残差和离散对数的“知识”的零知识交互证明都是作为特例。在此基础上,给出了关于整数分解的“知识”、Zp*的循环子群中的非隶属性以及确定元素是否生成Zp*的新的零知识交互证明。这些证明都不依赖于任何未经证实的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random self-reducibility and zero knowledge interactive proofs of possession of information
The notion of a zero knowledge interactive proof that one party "knows" some secret information is explored. It is shown that any "random self-reducible" problem has a zero knowledge interactive proof of this sort. The zero knowledge interactive proofs for graph isomorphism, quadratic residuosity, and "knowledge" of discrete logarithms all follow as special cases. Based on these results, new zero knowledge interactive proofs are exhibited for "knowledge" of the factorization of an integer, nonmembership in cyclic subgroups of Zp*, and determining whether an element generates Zp*. None of these proofs relies on any unproven assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信