VNQ市场预测的机器学习和时间序列模型

Yu-Min Lian, Chi Li, Yi Wei
{"title":"VNQ市场预测的机器学习和时间序列模型","authors":"Yu-Min Lian, Chi Li, Yi Wei","doi":"10.47260/JAFB/1152","DOIUrl":null,"url":null,"abstract":"Abstract\n\nThis study compares the price predictions of the Vanguard real estate exchange-traded fund (ETF) (VNQ) using the back propagation neural network (BPNN) and autoregressive integrated moving average (ARIMA) models. The input variables for BPNN include the past 3-day closing prices, daily trading volume, MA5, MA20, the S&P 500 index, the United States (US) dollar index, volatility index, 5-year treasury yields, and 10-year treasury yields. In addition, variable reduction is based on multiple linear regression (MLR). Mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to measure the prediction error between the actual closing price and the models’ forecasted price. The training set covers the period between January 1, 2015 and March 31, 2020, and the forecasting set covers the period from April 1, 2020 to June 30, 2020. The empirical results reveal that the BPNN model’s predictive ability is superior to the ARIMA model’s. The predictive accuracy of BPNN with one hidden layer is better than with two hidden layers. Our findings provide crucial market factors as input variables for BPNN that might inspire investors in VNQ markets.\n\nJEL classification numbers: C32, C45, C53, G17.\n\nKeywords: Vanguard real estate ETF (VNQ), Back propagation neural network (BPNN), Autoregressive integrated moving average (ARIMA), Multiple linear regression (MLR).","PeriodicalId":371149,"journal":{"name":"Journal of Applied Finance and Banking","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Machine Learning and Time Series Models for VNQ Market Predictions\",\"authors\":\"Yu-Min Lian, Chi Li, Yi Wei\",\"doi\":\"10.47260/JAFB/1152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract\\n\\nThis study compares the price predictions of the Vanguard real estate exchange-traded fund (ETF) (VNQ) using the back propagation neural network (BPNN) and autoregressive integrated moving average (ARIMA) models. The input variables for BPNN include the past 3-day closing prices, daily trading volume, MA5, MA20, the S&P 500 index, the United States (US) dollar index, volatility index, 5-year treasury yields, and 10-year treasury yields. In addition, variable reduction is based on multiple linear regression (MLR). Mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to measure the prediction error between the actual closing price and the models’ forecasted price. The training set covers the period between January 1, 2015 and March 31, 2020, and the forecasting set covers the period from April 1, 2020 to June 30, 2020. The empirical results reveal that the BPNN model’s predictive ability is superior to the ARIMA model’s. The predictive accuracy of BPNN with one hidden layer is better than with two hidden layers. Our findings provide crucial market factors as input variables for BPNN that might inspire investors in VNQ markets.\\n\\nJEL classification numbers: C32, C45, C53, G17.\\n\\nKeywords: Vanguard real estate ETF (VNQ), Back propagation neural network (BPNN), Autoregressive integrated moving average (ARIMA), Multiple linear regression (MLR).\",\"PeriodicalId\":371149,\"journal\":{\"name\":\"Journal of Applied Finance and Banking\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Finance and Banking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47260/JAFB/1152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Finance and Banking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47260/JAFB/1152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要本研究比较了先锋房地产交易所交易基金(ETF) (VNQ)使用反向传播神经网络(BPNN)和自回归综合移动平均(ARIMA)模型的价格预测。BPNN的输入变量包括过去3天的收盘价、每日交易量、MA5、MA20、标准普尔500指数、美元指数、波动率指数、5年期国债收益率和10年期国债收益率。此外,变量约简基于多元线性回归(MLR)。均方误差(MSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)用来衡量实际收盘价与模型预测价格之间的预测误差。训练集的时间段为2015年1月1日至2020年3月31日,预测集的时间段为2020年4月1日至2020年6月30日。实证结果表明,BPNN模型的预测能力优于ARIMA模型。单隐层bp神经网络的预测精度优于双隐层bp神经网络。我们的发现提供了关键的市场因素作为BPNN的输入变量,这可能会激励VNQ市场的投资者。JEL分类号:C32、C45、C53、G17。关键词:Vanguard房地产ETF (VNQ),反向传播神经网络(BPNN),自回归综合移动平均(ARIMA),多元线性回归(MLR)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning and Time Series Models for VNQ Market Predictions
Abstract This study compares the price predictions of the Vanguard real estate exchange-traded fund (ETF) (VNQ) using the back propagation neural network (BPNN) and autoregressive integrated moving average (ARIMA) models. The input variables for BPNN include the past 3-day closing prices, daily trading volume, MA5, MA20, the S&P 500 index, the United States (US) dollar index, volatility index, 5-year treasury yields, and 10-year treasury yields. In addition, variable reduction is based on multiple linear regression (MLR). Mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are used to measure the prediction error between the actual closing price and the models’ forecasted price. The training set covers the period between January 1, 2015 and March 31, 2020, and the forecasting set covers the period from April 1, 2020 to June 30, 2020. The empirical results reveal that the BPNN model’s predictive ability is superior to the ARIMA model’s. The predictive accuracy of BPNN with one hidden layer is better than with two hidden layers. Our findings provide crucial market factors as input variables for BPNN that might inspire investors in VNQ markets. JEL classification numbers: C32, C45, C53, G17. Keywords: Vanguard real estate ETF (VNQ), Back propagation neural network (BPNN), Autoregressive integrated moving average (ARIMA), Multiple linear regression (MLR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信