使用单一商品流的最稀疏切割近似

K. A.
{"title":"使用单一商品流的最稀疏切割近似","authors":"K. A.","doi":"10.2139/ssrn.3305748","DOIUrl":null,"url":null,"abstract":"In this paper, we present an algorithm approximating the sparsest cut within a factor of O(log<sup> 2</sup> n) in Õ(m + n<sup>3/2</sup>) time introduced by Khandekar, Rao and Vazirani in. While we explain the theoretical background and prove the claimed approximation factor and runtime, we add new visualization to improve the understandibility.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparsest Cut Approximation Using Single Commodity Flows\",\"authors\":\"K. A.\",\"doi\":\"10.2139/ssrn.3305748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an algorithm approximating the sparsest cut within a factor of O(log<sup> 2</sup> n) in Õ(m + n<sup>3/2</sup>) time introduced by Khandekar, Rao and Vazirani in. While we explain the theoretical background and prove the claimed approximation factor and runtime, we add new visualization to improve the understandibility.\",\"PeriodicalId\":365755,\"journal\":{\"name\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3305748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3305748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了在Õ(m + n3/2)时间内近似于O(log 2n)因子的最稀疏切割算法。在解释理论背景并证明所声称的近似因子和运行时间的同时,我们增加了新的可视化以提高可理解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparsest Cut Approximation Using Single Commodity Flows
In this paper, we present an algorithm approximating the sparsest cut within a factor of O(log 2 n) in Õ(m + n3/2) time introduced by Khandekar, Rao and Vazirani in. While we explain the theoretical background and prove the claimed approximation factor and runtime, we add new visualization to improve the understandibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信