不同描述符对使用FREAK增强图像配准技术的影响:案例研究

Aarathi M R, Jini Raju
{"title":"不同描述符对使用FREAK增强图像配准技术的影响:案例研究","authors":"Aarathi M R, Jini Raju","doi":"10.1109/ICIICT1.2019.8741354","DOIUrl":null,"url":null,"abstract":"Image registration is considered as an important research direction in image processing and computer vision. Image registration is the method of arranging, matching and overlaying two or more images of a scene which are captured from similar scenes, but not same scenes. Images captured at different times from different viewpoint may vary in contrast, color or brightness. Image registration transfers the color style of target images to the reference image selected from one of these captured images. This paper evaluates the performance of different descriptors like SIFT, SURF, FREAK using SIFT, FREAK using SURF and CNN in generating matching images. Different performance measures like SSIM, MSSSIM, CSSS, MSE, PSNR, UQI and RMSE are used to compare the matching image with the input reference image to determine the visual quality and structural similarity. Experimental results show that FREAK using SURF outperforms other descriptors in the case of structural similarity and visual quality.","PeriodicalId":118897,"journal":{"name":"2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Different Descriptors to Enhance Image Registration Techniques Using FREAK: Case Study\",\"authors\":\"Aarathi M R, Jini Raju\",\"doi\":\"10.1109/ICIICT1.2019.8741354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image registration is considered as an important research direction in image processing and computer vision. Image registration is the method of arranging, matching and overlaying two or more images of a scene which are captured from similar scenes, but not same scenes. Images captured at different times from different viewpoint may vary in contrast, color or brightness. Image registration transfers the color style of target images to the reference image selected from one of these captured images. This paper evaluates the performance of different descriptors like SIFT, SURF, FREAK using SIFT, FREAK using SURF and CNN in generating matching images. Different performance measures like SSIM, MSSSIM, CSSS, MSE, PSNR, UQI and RMSE are used to compare the matching image with the input reference image to determine the visual quality and structural similarity. Experimental results show that FREAK using SURF outperforms other descriptors in the case of structural similarity and visual quality.\",\"PeriodicalId\":118897,\"journal\":{\"name\":\"2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIICT1.2019.8741354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIICT1.2019.8741354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像配准是图像处理和计算机视觉领域的一个重要研究方向。图像配准是对从相似但不相同的场景中捕获的两个或多个场景图像进行排列、匹配和叠加的方法。在不同时间从不同视点拍摄的图像可能在对比度、颜色或亮度上有所不同。图像配准将目标图像的颜色样式转移到从这些捕获图像之一中选择的参考图像。本文评价了SIFT、SURF、FREAK使用SIFT、FREAK使用SURF和CNN等不同描述符在生成匹配图像中的性能。使用SSIM、MSSSIM、CSSS、MSE、PSNR、UQI和RMSE等不同的性能度量将匹配图像与输入参考图像进行比较,以确定视觉质量和结构相似性。实验结果表明,在结构相似度和视觉质量方面,使用SURF的FREAK优于其他描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Different Descriptors to Enhance Image Registration Techniques Using FREAK: Case Study
Image registration is considered as an important research direction in image processing and computer vision. Image registration is the method of arranging, matching and overlaying two or more images of a scene which are captured from similar scenes, but not same scenes. Images captured at different times from different viewpoint may vary in contrast, color or brightness. Image registration transfers the color style of target images to the reference image selected from one of these captured images. This paper evaluates the performance of different descriptors like SIFT, SURF, FREAK using SIFT, FREAK using SURF and CNN in generating matching images. Different performance measures like SSIM, MSSSIM, CSSS, MSE, PSNR, UQI and RMSE are used to compare the matching image with the input reference image to determine the visual quality and structural similarity. Experimental results show that FREAK using SURF outperforms other descriptors in the case of structural similarity and visual quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信