具有多元扩散资产价格的博弈选项离散逼近的误差估计

Y. Kifer
{"title":"具有多元扩散资产价格的博弈选项离散逼近的误差估计","authors":"Y. Kifer","doi":"10.31390/josa.2.3.08","DOIUrl":null,"url":null,"abstract":"We obtain error estimates for strong approximations of a diffusion with a diffusion matrix $\\sigma$ and a drift b by the discrete time process defined recursively X_N((n+1)/N) = X_N(n/N)+N^{1/2}\\sigma(X_N(n/N))\\xi(n+1)+N^{-1}b(XN(n/N)); where \\xi(n); n\\geq 1 are i.i.d. random vectors, and apply this in order to approximate the fair price of a game option with a diffusion asset price evolution by values of Dynkin's games with payoffs based on the above discrete time processes. This provides an effective tool for computations of fair prices of game options with path dependent payoffs in a multi asset market with diffusion evolution.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Error Estimates for Discrete Approximations of Game Options with Multivariate Diffusion Asset Prices\",\"authors\":\"Y. Kifer\",\"doi\":\"10.31390/josa.2.3.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain error estimates for strong approximations of a diffusion with a diffusion matrix $\\\\sigma$ and a drift b by the discrete time process defined recursively X_N((n+1)/N) = X_N(n/N)+N^{1/2}\\\\sigma(X_N(n/N))\\\\xi(n+1)+N^{-1}b(XN(n/N)); where \\\\xi(n); n\\\\geq 1 are i.i.d. random vectors, and apply this in order to approximate the fair price of a game option with a diffusion asset price evolution by values of Dynkin's games with payoffs based on the above discrete time processes. This provides an effective tool for computations of fair prices of game options with path dependent payoffs in a multi asset market with diffusion evolution.\",\"PeriodicalId\":263604,\"journal\":{\"name\":\"Journal of Stochastic Analysis\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/josa.2.3.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.2.3.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们通过递归定义的离散时间过程X_N((n+1)/ n) = X_N(n/ n)+ n ^1/2\sigma (X_N(n/ n)) {}\xi (n+1)+ n ^(XN(n/ n)),得到具有扩散矩阵$\sigma$和漂移b的扩散的强逼近的误差估计;其中{}\xi (n);n \geq 1是i.i.d随机向量,并将其应用于通过基于上述离散时间过程的Dynkin游戏的收益值来近似具有扩散资产价格演变的游戏选项的公平价格。这为具有扩散演化的多资产市场中具有路径依赖收益的博弈期权的公平价格计算提供了一个有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error Estimates for Discrete Approximations of Game Options with Multivariate Diffusion Asset Prices
We obtain error estimates for strong approximations of a diffusion with a diffusion matrix $\sigma$ and a drift b by the discrete time process defined recursively X_N((n+1)/N) = X_N(n/N)+N^{1/2}\sigma(X_N(n/N))\xi(n+1)+N^{-1}b(XN(n/N)); where \xi(n); n\geq 1 are i.i.d. random vectors, and apply this in order to approximate the fair price of a game option with a diffusion asset price evolution by values of Dynkin's games with payoffs based on the above discrete time processes. This provides an effective tool for computations of fair prices of game options with path dependent payoffs in a multi asset market with diffusion evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信