空间-空间非交换性和动量-动量非交换性非交换平面上的霍尔效应

W. Chung
{"title":"空间-空间非交换性和动量-动量非交换性非交换平面上的霍尔效应","authors":"W. Chung","doi":"10.12988/astp.2017.614","DOIUrl":null,"url":null,"abstract":"In this paper we consider the non-commutative plane with both space-space non-commutativity and momentum-momentum non-commutativity. We study the hamiltonian for an an electron moving on the non-commutative plane in the uniform external electric field along the x-axis and the uniform external magnetic field which is perpendicular to the plane. We solve the Schrödinger equation for this hamiltonian by using the standard factorization method and compute the Hall conductivity.","PeriodicalId":127314,"journal":{"name":"Advanced Studies in Theoretical Physics","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hall effect on non-commutative plane with space-space non-commutativity and momentum-momentum non-commutativity\",\"authors\":\"W. Chung\",\"doi\":\"10.12988/astp.2017.614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the non-commutative plane with both space-space non-commutativity and momentum-momentum non-commutativity. We study the hamiltonian for an an electron moving on the non-commutative plane in the uniform external electric field along the x-axis and the uniform external magnetic field which is perpendicular to the plane. We solve the Schrödinger equation for this hamiltonian by using the standard factorization method and compute the Hall conductivity.\",\"PeriodicalId\":127314,\"journal\":{\"name\":\"Advanced Studies in Theoretical Physics\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Studies in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/astp.2017.614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Studies in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/astp.2017.614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑具有空间-空间非交换性和动量-动量非交换性的非交换平面。研究了电子在沿x轴的均匀外电场和垂直于平面的均匀外磁场下在非交换平面上运动的哈密顿量。我们用标准分解法求解了这个哈密顿量的Schrödinger方程,并计算了霍尔电导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hall effect on non-commutative plane with space-space non-commutativity and momentum-momentum non-commutativity
In this paper we consider the non-commutative plane with both space-space non-commutativity and momentum-momentum non-commutativity. We study the hamiltonian for an an electron moving on the non-commutative plane in the uniform external electric field along the x-axis and the uniform external magnetic field which is perpendicular to the plane. We solve the Schrödinger equation for this hamiltonian by using the standard factorization method and compute the Hall conductivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信