利用主成分分析选择Top-k判别特征

Aminata Kane, Nematollaah Shiri
{"title":"利用主成分分析选择Top-k判别特征","authors":"Aminata Kane, Nematollaah Shiri","doi":"10.1109/ICDMW.2016.0096","DOIUrl":null,"url":null,"abstract":"Feature selection is important for dimensionality reduction, analysis, and pattern discovery applications. We consider multivariate time series data and propose an unsupervised learning technique to identify the top-k discriminative features. The proposed technique uses statistics drawn from the Principal Component Analysis (PCA) of the input data to leverage the relative importance of the principal components along with the coefficients within the principal directions of the data to uncover the ranking of the features. We conduct numerous experiments using various benchmark datasets to study the performance of the proposed technique in terms of the discriminant power of the selected features and its ability to minimize the original data reconstruction error. Compared to major existing techniques, our results indicate increased accuracy and efficiency. We also show that our technique yields improved classification accuracy.","PeriodicalId":373866,"journal":{"name":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Selecting the Top-k Discriminative Features Using Principal Component Analysis\",\"authors\":\"Aminata Kane, Nematollaah Shiri\",\"doi\":\"10.1109/ICDMW.2016.0096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is important for dimensionality reduction, analysis, and pattern discovery applications. We consider multivariate time series data and propose an unsupervised learning technique to identify the top-k discriminative features. The proposed technique uses statistics drawn from the Principal Component Analysis (PCA) of the input data to leverage the relative importance of the principal components along with the coefficients within the principal directions of the data to uncover the ranking of the features. We conduct numerous experiments using various benchmark datasets to study the performance of the proposed technique in terms of the discriminant power of the selected features and its ability to minimize the original data reconstruction error. Compared to major existing techniques, our results indicate increased accuracy and efficiency. We also show that our technique yields improved classification accuracy.\",\"PeriodicalId\":373866,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2016.0096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2016.0096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

特征选择对于降维、分析和模式发现应用程序非常重要。我们考虑多变量时间序列数据,并提出一种无监督学习技术来识别top-k判别特征。所提出的技术使用从输入数据的主成分分析(PCA)中提取的统计数据来利用主成分的相对重要性以及数据主方向内的系数来揭示特征的排名。我们使用各种基准数据集进行了大量实验,以研究所提出的技术在选择特征的判别能力和最小化原始数据重建误差方面的性能。与现有的主要技术相比,我们的结果表明准确性和效率都有所提高。我们还表明,我们的技术提高了分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selecting the Top-k Discriminative Features Using Principal Component Analysis
Feature selection is important for dimensionality reduction, analysis, and pattern discovery applications. We consider multivariate time series data and propose an unsupervised learning technique to identify the top-k discriminative features. The proposed technique uses statistics drawn from the Principal Component Analysis (PCA) of the input data to leverage the relative importance of the principal components along with the coefficients within the principal directions of the data to uncover the ranking of the features. We conduct numerous experiments using various benchmark datasets to study the performance of the proposed technique in terms of the discriminant power of the selected features and its ability to minimize the original data reconstruction error. Compared to major existing techniques, our results indicate increased accuracy and efficiency. We also show that our technique yields improved classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信