{"title":"使用MLEM2规则归纳算法的正规则、边界规则和可能规则的比较","authors":"J. Grzymala-Busse, Shantan R. Marepally, Yiyu Yao","doi":"10.1109/HIS.2010.5601064","DOIUrl":null,"url":null,"abstract":"We explore an extension of rough set theory based on probability theory. Lower and upper approximations, the basic ideas of rough set theory, are generalized by adding two parameters, denoted by alpha and beta. In our experiments, for different pairs of alpha and beta, we induced three types of rules: positive, boundary, and possible. The quality of these rules was evaluated using ten-fold cross validation on five data sets. The main results of our experiments are that there is no significant difference in quality between positive and possible rules and that boundary rules are the worst.","PeriodicalId":174618,"journal":{"name":"2010 10th International Conference on Hybrid Intelligent Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A comparison of positive, boundary, and possible rules using the MLEM2 rule induction algorithm\",\"authors\":\"J. Grzymala-Busse, Shantan R. Marepally, Yiyu Yao\",\"doi\":\"10.1109/HIS.2010.5601064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore an extension of rough set theory based on probability theory. Lower and upper approximations, the basic ideas of rough set theory, are generalized by adding two parameters, denoted by alpha and beta. In our experiments, for different pairs of alpha and beta, we induced three types of rules: positive, boundary, and possible. The quality of these rules was evaluated using ten-fold cross validation on five data sets. The main results of our experiments are that there is no significant difference in quality between positive and possible rules and that boundary rules are the worst.\",\"PeriodicalId\":174618,\"journal\":{\"name\":\"2010 10th International Conference on Hybrid Intelligent Systems\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2010.5601064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2010.5601064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison of positive, boundary, and possible rules using the MLEM2 rule induction algorithm
We explore an extension of rough set theory based on probability theory. Lower and upper approximations, the basic ideas of rough set theory, are generalized by adding two parameters, denoted by alpha and beta. In our experiments, for different pairs of alpha and beta, we induced three types of rules: positive, boundary, and possible. The quality of these rules was evaluated using ten-fold cross validation on five data sets. The main results of our experiments are that there is no significant difference in quality between positive and possible rules and that boundary rules are the worst.