离散优化理论中的代数和几何思想

J. D. Loera, R. Hemmecke, M. Köppe
{"title":"离散优化理论中的代数和几何思想","authors":"J. D. Loera, R. Hemmecke, M. Köppe","doi":"10.1137/1.9781611972443","DOIUrl":null,"url":null,"abstract":"This book presents recent advances in the mathematical theory of discrete optimization, particularly those supported by methods from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside the standard curriculum in optimization. Algebraic and Geometric Ideas in the Theory of Discrete Optimization offers several research technologies not yet well known among practitioners of discrete optimization, minimizes prerequisites for learning these methods, and provides a transition from linear discrete optimization to nonlinear discrete optimization. Audience: This book can be used as a textbook for advanced undergraduates or beginning graduate students in mathematics, computer science, or operations research or as a tutorial for mathematicians, engineers, and scientists engaged in computation who wish to delve more deeply into how and why algorithms do or do not work. Contents: Part I: Established Tools of Discrete Optimization; Chapter 1: Tools from Linear and Convex Optimization; Chapter 2: Tools from the Geometry of Numbers and Integer Optimization; Part II: Graver Basis Methods; Chapter 3: Graver Bases; Chapter 4: Graver Bases for Block-Structured Integer Programs; Part III: Generating Function Methods; Chapter 5: Introduction to Generating Functions; Chapter 6: Decompositions of Indicator Functions of Polyhedral; Chapter 7: Barvinok s Short Rational Generating Functions; Chapter 8: Global Mixed-Integer Polynomial Optimization via Summation; Chapter 9: Multicriteria Integer Linear Optimization via Integer Projection; Part IV: Grbner Basis Methods; Chapter 10: Computations with Polynomials; Chapter 11: Grbner Bases in Integer Programming; Part V: Nullstellensatz and Positivstellensatz Relaxations; Chapter 12: The Nullstellensatz in Discrete Optimization; Chapter 13: Positivity of Polynomials and Global Optimization; Chapter 14: Epilogue.","PeriodicalId":215971,"journal":{"name":"MOS-SIAM Series on Optimization","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":"{\"title\":\"Algebraic and Geometric Ideas in the Theory of Discrete Optimization\",\"authors\":\"J. D. Loera, R. Hemmecke, M. Köppe\",\"doi\":\"10.1137/1.9781611972443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This book presents recent advances in the mathematical theory of discrete optimization, particularly those supported by methods from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside the standard curriculum in optimization. Algebraic and Geometric Ideas in the Theory of Discrete Optimization offers several research technologies not yet well known among practitioners of discrete optimization, minimizes prerequisites for learning these methods, and provides a transition from linear discrete optimization to nonlinear discrete optimization. Audience: This book can be used as a textbook for advanced undergraduates or beginning graduate students in mathematics, computer science, or operations research or as a tutorial for mathematicians, engineers, and scientists engaged in computation who wish to delve more deeply into how and why algorithms do or do not work. Contents: Part I: Established Tools of Discrete Optimization; Chapter 1: Tools from Linear and Convex Optimization; Chapter 2: Tools from the Geometry of Numbers and Integer Optimization; Part II: Graver Basis Methods; Chapter 3: Graver Bases; Chapter 4: Graver Bases for Block-Structured Integer Programs; Part III: Generating Function Methods; Chapter 5: Introduction to Generating Functions; Chapter 6: Decompositions of Indicator Functions of Polyhedral; Chapter 7: Barvinok s Short Rational Generating Functions; Chapter 8: Global Mixed-Integer Polynomial Optimization via Summation; Chapter 9: Multicriteria Integer Linear Optimization via Integer Projection; Part IV: Grbner Basis Methods; Chapter 10: Computations with Polynomials; Chapter 11: Grbner Bases in Integer Programming; Part V: Nullstellensatz and Positivstellensatz Relaxations; Chapter 12: The Nullstellensatz in Discrete Optimization; Chapter 13: Positivity of Polynomials and Global Optimization; Chapter 14: Epilogue.\",\"PeriodicalId\":215971,\"journal\":{\"name\":\"MOS-SIAM Series on Optimization\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MOS-SIAM Series on Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611972443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOS-SIAM Series on Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

摘要

本书介绍了离散优化数学理论的最新进展,特别是那些由代数几何、交换代数、凸和离散几何、生成函数和其他工具支持的方法,这些工具通常被认为是标准课程之外的优化。《离散优化理论中的代数和几何思想》提供了一些在离散优化实践者中尚未广为人知的研究技术,最大限度地减少了学习这些方法的先决条件,并提供了从线性离散优化到非线性离散优化的过渡。读者:这本书可以作为数学、计算机科学或运筹学的高级本科生或研究生的教科书,也可以作为数学家、工程师和从事计算的科学家的教程,他们希望更深入地研究算法是如何工作的以及为什么工作的。内容:第一部分:建立离散优化工具;第1章:线性和凸优化工具;第二章:数字几何中的工具和整数优化;第二部分:格拉弗基础方法;第三章:雕刻底座;第4章:块结构整数规划的grver基第三部分:生成函数方法;第5章:生成函数简介;第六章:多面体指示函数的分解;第七章Barvinok的短有理生成函数第8章:基于求和的全局混合整数多项式优化;第九章:基于整数投影的多准则整数线性优化;第四部分:Grbner基法;第十章:多项式的计算;第11章:整数规划中的Grbner基;第五部分:零stellensatz松弛和正stellensatz松弛第12章:离散优化中的零矩阵;第13章:多项式的正性与全局寻优;第十四章:结语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic and Geometric Ideas in the Theory of Discrete Optimization
This book presents recent advances in the mathematical theory of discrete optimization, particularly those supported by methods from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside the standard curriculum in optimization. Algebraic and Geometric Ideas in the Theory of Discrete Optimization offers several research technologies not yet well known among practitioners of discrete optimization, minimizes prerequisites for learning these methods, and provides a transition from linear discrete optimization to nonlinear discrete optimization. Audience: This book can be used as a textbook for advanced undergraduates or beginning graduate students in mathematics, computer science, or operations research or as a tutorial for mathematicians, engineers, and scientists engaged in computation who wish to delve more deeply into how and why algorithms do or do not work. Contents: Part I: Established Tools of Discrete Optimization; Chapter 1: Tools from Linear and Convex Optimization; Chapter 2: Tools from the Geometry of Numbers and Integer Optimization; Part II: Graver Basis Methods; Chapter 3: Graver Bases; Chapter 4: Graver Bases for Block-Structured Integer Programs; Part III: Generating Function Methods; Chapter 5: Introduction to Generating Functions; Chapter 6: Decompositions of Indicator Functions of Polyhedral; Chapter 7: Barvinok s Short Rational Generating Functions; Chapter 8: Global Mixed-Integer Polynomial Optimization via Summation; Chapter 9: Multicriteria Integer Linear Optimization via Integer Projection; Part IV: Grbner Basis Methods; Chapter 10: Computations with Polynomials; Chapter 11: Grbner Bases in Integer Programming; Part V: Nullstellensatz and Positivstellensatz Relaxations; Chapter 12: The Nullstellensatz in Discrete Optimization; Chapter 13: Positivity of Polynomials and Global Optimization; Chapter 14: Epilogue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信