提高自旋SNN训练精度的新知识蒸馏方法

Hanrui Li, Aijaz H. Lone, Fengshi Tian, Jie Yang, M. Sawan, Nazek El‐Atab
{"title":"提高自旋SNN训练精度的新知识蒸馏方法","authors":"Hanrui Li, Aijaz H. Lone, Fengshi Tian, Jie Yang, M. Sawan, Nazek El‐Atab","doi":"10.1109/AICAS57966.2023.10168575","DOIUrl":null,"url":null,"abstract":"Spintronics-based magnetic tunnel junction (MTJ) devices have shown the ability working as both synapse and spike threshold neurons, which is perfectly suitable with the hardware implementation of spike neural network (SNN). It has the inherent advantage of high energy efficiency with ultra-low operation voltage due to its small nanometric size and low depinning current densities. However, hardware-based SNNs training always suffers a significant performance loss compared with original neural networks due to variations among devices and information deficiency as the weights map with device synaptic conductance. Knowledge distillation is a model compression and acceleration method that enables transferring the learning knowledge from a large machine learning model to a smaller model with minimal loss in performance. In this paper, we propose a novel training scheme based on spike knowledge distillation which helps improve the training performance of spin-based SNN (SSNN) model via transferring knowledge from a large CNN model. We propose novel distillation methodologies and demonstrate the effectiveness of the proposed method with detailed experiments on four datasets. The experimental results indicate that our proposed training scheme consistently improves the performance of SSNN model by a large margin.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Knowledge Distillation to Improve Training Accuracy of Spin-based SNN\",\"authors\":\"Hanrui Li, Aijaz H. Lone, Fengshi Tian, Jie Yang, M. Sawan, Nazek El‐Atab\",\"doi\":\"10.1109/AICAS57966.2023.10168575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spintronics-based magnetic tunnel junction (MTJ) devices have shown the ability working as both synapse and spike threshold neurons, which is perfectly suitable with the hardware implementation of spike neural network (SNN). It has the inherent advantage of high energy efficiency with ultra-low operation voltage due to its small nanometric size and low depinning current densities. However, hardware-based SNNs training always suffers a significant performance loss compared with original neural networks due to variations among devices and information deficiency as the weights map with device synaptic conductance. Knowledge distillation is a model compression and acceleration method that enables transferring the learning knowledge from a large machine learning model to a smaller model with minimal loss in performance. In this paper, we propose a novel training scheme based on spike knowledge distillation which helps improve the training performance of spin-based SNN (SSNN) model via transferring knowledge from a large CNN model. We propose novel distillation methodologies and demonstrate the effectiveness of the proposed method with detailed experiments on four datasets. The experimental results indicate that our proposed training scheme consistently improves the performance of SSNN model by a large margin.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于自旋电子学的磁隧道结(MTJ)器件已经显示出同时作为突触和尖峰阈值神经元的能力,非常适合于尖峰神经网络(SNN)的硬件实现。由于其纳米尺寸小,脱屑电流密度小,具有高能效和超低工作电压的固有优势。然而,基于硬件的snn训练与原始神经网络相比,由于设备之间的差异以及权重与设备突触电导映射的信息不足,总是会遭受明显的性能损失。知识蒸馏是一种模型压缩和加速方法,可以将学习知识从大型机器学习模型转移到性能损失最小的小型机器学习模型。本文提出了一种新的基于spike知识蒸馏的训练方案,该方案通过从大型CNN模型中转移知识来提高基于自旋的SNN (SSNN)模型的训练性能。我们提出了新的蒸馏方法,并通过在四个数据集上的详细实验证明了所提出方法的有效性。实验结果表明,我们提出的训练方案在很大程度上持续提高了SSNN模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Knowledge Distillation to Improve Training Accuracy of Spin-based SNN
Spintronics-based magnetic tunnel junction (MTJ) devices have shown the ability working as both synapse and spike threshold neurons, which is perfectly suitable with the hardware implementation of spike neural network (SNN). It has the inherent advantage of high energy efficiency with ultra-low operation voltage due to its small nanometric size and low depinning current densities. However, hardware-based SNNs training always suffers a significant performance loss compared with original neural networks due to variations among devices and information deficiency as the weights map with device synaptic conductance. Knowledge distillation is a model compression and acceleration method that enables transferring the learning knowledge from a large machine learning model to a smaller model with minimal loss in performance. In this paper, we propose a novel training scheme based on spike knowledge distillation which helps improve the training performance of spin-based SNN (SSNN) model via transferring knowledge from a large CNN model. We propose novel distillation methodologies and demonstrate the effectiveness of the proposed method with detailed experiments on four datasets. The experimental results indicate that our proposed training scheme consistently improves the performance of SSNN model by a large margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信