{"title":"基于agent仿真和多目标搜索的多无人机冲突解决测试方法","authors":"Xueyi Zou, R. Alexander, J. Mcdermid","doi":"10.2514/1.I010412","DOIUrl":null,"url":null,"abstract":"A new approach to testing multi-UAV conflict resolution algorithms is presented. The problem is formulated as a multi-objective search problem with two objectives: finding air traffic encounters that 1) are able to reveal faults in conflict resolution algorithms and 2) are likely to happen in the real world. The method uses agent-based simulation and multi-objective search to automatically find encounters satisfying these objectives. It describes pairwise encounters in three-dimensional space using a parameterized geometry representation, which allows encounters involving multiple UAVs to be generated by combining several pairwise encounters. The consequences of the encounters, given the conflict resolution algorithm, are explored using a fast-time agent-based simulator. To find encounters meeting the two objectives, a genetic algorithm approach is used. The method is applied to test ORCA-3D, a widely cited open-source multi-UAV conflict resolution algorithm, and the method’s performance is compared with ...","PeriodicalId":179117,"journal":{"name":"J. Aerosp. Inf. Syst.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Testing Method for Multi-UAV Conflict Resolution Using Agent-Based Simulation and Multi-Objective Search\",\"authors\":\"Xueyi Zou, R. Alexander, J. Mcdermid\",\"doi\":\"10.2514/1.I010412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach to testing multi-UAV conflict resolution algorithms is presented. The problem is formulated as a multi-objective search problem with two objectives: finding air traffic encounters that 1) are able to reveal faults in conflict resolution algorithms and 2) are likely to happen in the real world. The method uses agent-based simulation and multi-objective search to automatically find encounters satisfying these objectives. It describes pairwise encounters in three-dimensional space using a parameterized geometry representation, which allows encounters involving multiple UAVs to be generated by combining several pairwise encounters. The consequences of the encounters, given the conflict resolution algorithm, are explored using a fast-time agent-based simulator. To find encounters meeting the two objectives, a genetic algorithm approach is used. The method is applied to test ORCA-3D, a widely cited open-source multi-UAV conflict resolution algorithm, and the method’s performance is compared with ...\",\"PeriodicalId\":179117,\"journal\":{\"name\":\"J. Aerosp. Inf. Syst.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Aerosp. Inf. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.I010412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Aerosp. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.I010412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Testing Method for Multi-UAV Conflict Resolution Using Agent-Based Simulation and Multi-Objective Search
A new approach to testing multi-UAV conflict resolution algorithms is presented. The problem is formulated as a multi-objective search problem with two objectives: finding air traffic encounters that 1) are able to reveal faults in conflict resolution algorithms and 2) are likely to happen in the real world. The method uses agent-based simulation and multi-objective search to automatically find encounters satisfying these objectives. It describes pairwise encounters in three-dimensional space using a parameterized geometry representation, which allows encounters involving multiple UAVs to be generated by combining several pairwise encounters. The consequences of the encounters, given the conflict resolution algorithm, are explored using a fast-time agent-based simulator. To find encounters meeting the two objectives, a genetic algorithm approach is used. The method is applied to test ORCA-3D, a widely cited open-source multi-UAV conflict resolution algorithm, and the method’s performance is compared with ...