可测量软集

A. Mukherjee, A. Saha, A. Das
{"title":"可测量软集","authors":"A. Mukherjee, A. Saha, A. Das","doi":"10.12816/0023170","DOIUrl":null,"url":null,"abstract":"The soft set is a mapping from a parameter to the crisp subset of universe. Molodtsov introduced the concept of soft sets as a generalized tool for modeling complex systems involving uncertain or not clearly defined objects. In this paper the concept of measurable soft sets are introduced and their properties are discussed. The open problem of this paper is to develop measurable functions and lebesgue integral in soft set theory context.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Measurable Soft Sets\",\"authors\":\"A. Mukherjee, A. Saha, A. Das\",\"doi\":\"10.12816/0023170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The soft set is a mapping from a parameter to the crisp subset of universe. Molodtsov introduced the concept of soft sets as a generalized tool for modeling complex systems involving uncertain or not clearly defined objects. In this paper the concept of measurable soft sets are introduced and their properties are discussed. The open problem of this paper is to develop measurable functions and lebesgue integral in soft set theory context.\",\"PeriodicalId\":210748,\"journal\":{\"name\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12816/0023170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0023170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

软集是从参数到宇宙的清晰子集的映射。Molodtsov引入了软集的概念,将其作为一种通用工具,用于对涉及不确定或定义不明确的对象的复杂系统进行建模。本文引入了可测软集的概念,讨论了其性质。本文的开放问题是在软集理论的背景下发展可测函数和勒贝格积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurable Soft Sets
The soft set is a mapping from a parameter to the crisp subset of universe. Molodtsov introduced the concept of soft sets as a generalized tool for modeling complex systems involving uncertain or not clearly defined objects. In this paper the concept of measurable soft sets are introduced and their properties are discussed. The open problem of this paper is to develop measurable functions and lebesgue integral in soft set theory context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信