Fukunaga Kengo, Satake Masayoshi, N. Maeda, Kazushi Shikata, Tomohisa Ezaka
{"title":"离子风在涡环发生器中的应用及其输送效率","authors":"Fukunaga Kengo, Satake Masayoshi, N. Maeda, Kazushi Shikata, Tomohisa Ezaka","doi":"10.1115/ajkfluids2019-5141","DOIUrl":null,"url":null,"abstract":"\n In this study, ionic wind generated in corona discharge is focused for producing an air flow without having mechanical actuators. First, the kinetic energy conversion efficiency to ionic wind from electric power is experimentally estimated to be 0.32%. Then, it is confirmed that intermittent blows of ionic wind enable to produce vortex rings without using mechanical system. We adopt novel sub-chamber structure to avoid the concentration of the substance in a vortex ring low, so that the substance concentration transported to the target distance of 200 mm increases by 9%. As an application, the efficiency for moisture transportation is evaluated through experimental measurements. As a result, it is shown that the substance (moisture) can be transported at an efficiency of about 85% to target distance of 200 mm under conditions where the influence of external turbulence is small.","PeriodicalId":314304,"journal":{"name":"Volume 1: Fluid Mechanics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic Wind Application to Vortex Ring Generator and its Transportation Efficiency\",\"authors\":\"Fukunaga Kengo, Satake Masayoshi, N. Maeda, Kazushi Shikata, Tomohisa Ezaka\",\"doi\":\"10.1115/ajkfluids2019-5141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, ionic wind generated in corona discharge is focused for producing an air flow without having mechanical actuators. First, the kinetic energy conversion efficiency to ionic wind from electric power is experimentally estimated to be 0.32%. Then, it is confirmed that intermittent blows of ionic wind enable to produce vortex rings without using mechanical system. We adopt novel sub-chamber structure to avoid the concentration of the substance in a vortex ring low, so that the substance concentration transported to the target distance of 200 mm increases by 9%. As an application, the efficiency for moisture transportation is evaluated through experimental measurements. As a result, it is shown that the substance (moisture) can be transported at an efficiency of about 85% to target distance of 200 mm under conditions where the influence of external turbulence is small.\",\"PeriodicalId\":314304,\"journal\":{\"name\":\"Volume 1: Fluid Mechanics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-5141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ionic Wind Application to Vortex Ring Generator and its Transportation Efficiency
In this study, ionic wind generated in corona discharge is focused for producing an air flow without having mechanical actuators. First, the kinetic energy conversion efficiency to ionic wind from electric power is experimentally estimated to be 0.32%. Then, it is confirmed that intermittent blows of ionic wind enable to produce vortex rings without using mechanical system. We adopt novel sub-chamber structure to avoid the concentration of the substance in a vortex ring low, so that the substance concentration transported to the target distance of 200 mm increases by 9%. As an application, the efficiency for moisture transportation is evaluated through experimental measurements. As a result, it is shown that the substance (moisture) can be transported at an efficiency of about 85% to target distance of 200 mm under conditions where the influence of external turbulence is small.