一种基于深度学习和注意机制的人工句法分析方法

Rui Yang, Chaobing Huang
{"title":"一种基于深度学习和注意机制的人工句法分析方法","authors":"Rui Yang, Chaobing Huang","doi":"10.1109/ICSAI48974.2019.9010094","DOIUrl":null,"url":null,"abstract":"Human parsing is thought as a specific image semantic segmentation task. Most existing methods adopt encoder- decoder framework, and make full use of global context to achieve better image segmentation effect. A model is proposed in this paper which uses Convolutional Block Attention Module to select more discriminate feature and refinement residual learning to learn residual representation between input and output. The experiment results shows that our proposed model can achieve better performance on our dataset than other networks. From the generated human body segmentation images, the model can achieve more details and semantic consistency.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Human Parsing Based on Deep Learning and Attention Mechanism\",\"authors\":\"Rui Yang, Chaobing Huang\",\"doi\":\"10.1109/ICSAI48974.2019.9010094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human parsing is thought as a specific image semantic segmentation task. Most existing methods adopt encoder- decoder framework, and make full use of global context to achieve better image segmentation effect. A model is proposed in this paper which uses Convolutional Block Attention Module to select more discriminate feature and refinement residual learning to learn residual representation between input and output. The experiment results shows that our proposed model can achieve better performance on our dataset than other networks. From the generated human body segmentation images, the model can achieve more details and semantic consistency.\",\"PeriodicalId\":270809,\"journal\":{\"name\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI48974.2019.9010094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工解析被认为是一种特定的图像语义分割任务。现有的方法大多采用编码器-解码器框架,充分利用全局上下文来实现更好的图像分割效果。本文提出了一种基于卷积分块注意模块的模型,该模型使用卷积分块注意模块来选择更具区别性的特征,并通过残差学习来学习输入和输出之间的残差表示。实验结果表明,我们提出的模型在我们的数据集上取得了比其他网络更好的性能。从生成的人体分割图像中,该模型可以获得更多的细节和语义一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method for Human Parsing Based on Deep Learning and Attention Mechanism
Human parsing is thought as a specific image semantic segmentation task. Most existing methods adopt encoder- decoder framework, and make full use of global context to achieve better image segmentation effect. A model is proposed in this paper which uses Convolutional Block Attention Module to select more discriminate feature and refinement residual learning to learn residual representation between input and output. The experiment results shows that our proposed model can achieve better performance on our dataset than other networks. From the generated human body segmentation images, the model can achieve more details and semantic consistency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信