用MATLAB比较BP和RBF神经网络在居民消费水平预测中的应用

Zhang Caiqing, Qi Ruonan, Qiu Zhiwen
{"title":"用MATLAB比较BP和RBF神经网络在居民消费水平预测中的应用","authors":"Zhang Caiqing, Qi Ruonan, Qiu Zhiwen","doi":"10.1109/ICCEE.2008.35","DOIUrl":null,"url":null,"abstract":"This paper introduced BP neural network and RBF network's basic theory, compared these two characteristics of the network structure, and applied to the resident consumer level forecasts. In RBF neural network forecasting, by changing the size of the distribution density of RBF, adjusted the forecast accuracy of the network. Compared the two neural network forecast results by MATLAB simulation. From the quantitative point proved that the RBF neural network is more efficient and accurate than BP neural network in forecasting the resident consumer level, and thus more suitable for practical application in guiding the design of neural network.","PeriodicalId":365473,"journal":{"name":"2008 International Conference on Computer and Electrical Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Comparing BP and RBF Neural Network for Forecasting the Resident Consumer Level by MATLAB\",\"authors\":\"Zhang Caiqing, Qi Ruonan, Qiu Zhiwen\",\"doi\":\"10.1109/ICCEE.2008.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduced BP neural network and RBF network's basic theory, compared these two characteristics of the network structure, and applied to the resident consumer level forecasts. In RBF neural network forecasting, by changing the size of the distribution density of RBF, adjusted the forecast accuracy of the network. Compared the two neural network forecast results by MATLAB simulation. From the quantitative point proved that the RBF neural network is more efficient and accurate than BP neural network in forecasting the resident consumer level, and thus more suitable for practical application in guiding the design of neural network.\",\"PeriodicalId\":365473,\"journal\":{\"name\":\"2008 International Conference on Computer and Electrical Engineering\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Computer and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEE.2008.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2008.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文介绍了BP神经网络和RBF网络的基本理论,比较了这两种网络结构的特点,并将其应用于居民消费水平预测。在RBF神经网络预测中,通过改变RBF分布密度的大小来调整网络的预测精度。通过MATLAB仿真比较了两种神经网络的预测结果。从定量的角度证明了RBF神经网络在预测居民消费水平方面比BP神经网络更高效、更准确,更适合于实际应用,指导神经网络的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing BP and RBF Neural Network for Forecasting the Resident Consumer Level by MATLAB
This paper introduced BP neural network and RBF network's basic theory, compared these two characteristics of the network structure, and applied to the resident consumer level forecasts. In RBF neural network forecasting, by changing the size of the distribution density of RBF, adjusted the forecast accuracy of the network. Compared the two neural network forecast results by MATLAB simulation. From the quantitative point proved that the RBF neural network is more efficient and accurate than BP neural network in forecasting the resident consumer level, and thus more suitable for practical application in guiding the design of neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信