用于最小分类错误率训练的软GPD

Bertram E. Shi, K. Yao, Z. Cao
{"title":"用于最小分类错误率训练的软GPD","authors":"Bertram E. Shi, K. Yao, Z. Cao","doi":"10.1109/ICASSP.2000.861803","DOIUrl":null,"url":null,"abstract":"Minimum classification error (MCE) rate training is a discriminative training method which seeks to minimize an empirical estimate of the error probability derived over a training set. The segmental generalized probabilistic descent (GPD) algorithm for MCE uses the log likelihood of the best path as a discriminant function to estimate the error probability. This paper shows that by using a discriminant function similar to the auxiliary function used in EM, we can obtain a \"soft\" version of GPD in the sense that information about all possible paths is retained. Complexity is similar to segmental GPD. For certain parameter values, the algorithm is equivalent to segmental GPD. By modifying the misclassification measure usually used, we can obtain an algorithm for embedded MCE training for continuous speech which does not require a separate N-best search to determine competing classes. Experimental results show error rate reduction of 20% compared with maximum likelihood training.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soft GPD for minimum classification error rate training\",\"authors\":\"Bertram E. Shi, K. Yao, Z. Cao\",\"doi\":\"10.1109/ICASSP.2000.861803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minimum classification error (MCE) rate training is a discriminative training method which seeks to minimize an empirical estimate of the error probability derived over a training set. The segmental generalized probabilistic descent (GPD) algorithm for MCE uses the log likelihood of the best path as a discriminant function to estimate the error probability. This paper shows that by using a discriminant function similar to the auxiliary function used in EM, we can obtain a \\\"soft\\\" version of GPD in the sense that information about all possible paths is retained. Complexity is similar to segmental GPD. For certain parameter values, the algorithm is equivalent to segmental GPD. By modifying the misclassification measure usually used, we can obtain an algorithm for embedded MCE training for continuous speech which does not require a separate N-best search to determine competing classes. Experimental results show error rate reduction of 20% compared with maximum likelihood training.\",\"PeriodicalId\":164817,\"journal\":{\"name\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2000.861803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.861803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最小分类错误率(MCE)训练是一种判别训练方法,它寻求最小化在训练集上得出的错误概率的经验估计。MCE的分段广义概率下降(GPD)算法使用最优路径的对数似然作为判别函数来估计误差概率。本文表明,通过使用类似于EM中使用的辅助函数的判别函数,我们可以获得一个“软”版本的GPD,即保留了所有可能路径的信息。复杂性类似于分段GPD。对于某些参数值,该算法相当于分段GPD。通过修改通常使用的误分类度量,我们可以得到一种不需要单独的n -最优搜索来确定竞争类的连续语音嵌入式MCE训练算法。实验结果表明,与最大似然训练相比,错误率降低了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft GPD for minimum classification error rate training
Minimum classification error (MCE) rate training is a discriminative training method which seeks to minimize an empirical estimate of the error probability derived over a training set. The segmental generalized probabilistic descent (GPD) algorithm for MCE uses the log likelihood of the best path as a discriminant function to estimate the error probability. This paper shows that by using a discriminant function similar to the auxiliary function used in EM, we can obtain a "soft" version of GPD in the sense that information about all possible paths is retained. Complexity is similar to segmental GPD. For certain parameter values, the algorithm is equivalent to segmental GPD. By modifying the misclassification measure usually used, we can obtain an algorithm for embedded MCE training for continuous speech which does not require a separate N-best search to determine competing classes. Experimental results show error rate reduction of 20% compared with maximum likelihood training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信