预测流量渐变的显式人工神经网络

M. Cahyono
{"title":"预测流量渐变的显式人工神经网络","authors":"M. Cahyono","doi":"10.35139/cantilever.v11i1.131","DOIUrl":null,"url":null,"abstract":"The ANN procedure was used to develop an explicit equation for predicting the water level profile in a gradually varied flow. The equation consists of a series of hyperbolic tangent functions, with the number of series being the same as the number on the node in the hidden layer. The ANN model consists of 3 layers: the input layer consists of four nodes, the hidden layer has seven nodes and one node in the output layer. The input parameters used are parameters related to distance, discharge, roughness, and depth of flow at the downstream end of the channel. The output parameter is the flow depth at various points. The model has been used to estimate the water level profile for different flow conditions. The comparison between the explicit ANN model and the numerical model results is satisfactory. The models can be extended to study more complex flows and non-prismatic channels. The model is promising as a tool in decision support.","PeriodicalId":338977,"journal":{"name":"Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit Artificial Neural Networks For Predicting Gradually Varied Flow\",\"authors\":\"M. Cahyono\",\"doi\":\"10.35139/cantilever.v11i1.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ANN procedure was used to develop an explicit equation for predicting the water level profile in a gradually varied flow. The equation consists of a series of hyperbolic tangent functions, with the number of series being the same as the number on the node in the hidden layer. The ANN model consists of 3 layers: the input layer consists of four nodes, the hidden layer has seven nodes and one node in the output layer. The input parameters used are parameters related to distance, discharge, roughness, and depth of flow at the downstream end of the channel. The output parameter is the flow depth at various points. The model has been used to estimate the water level profile for different flow conditions. The comparison between the explicit ANN model and the numerical model results is satisfactory. The models can be extended to study more complex flows and non-prismatic channels. The model is promising as a tool in decision support.\",\"PeriodicalId\":338977,\"journal\":{\"name\":\"Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35139/cantilever.v11i1.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cantilever: Jurnal Penelitian dan Kajian Bidang Teknik Sipil","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35139/cantilever.v11i1.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用人工神经网络建立了一个预测流量逐渐变化时水位分布的显式方程。该方程由一系列双曲正切函数组成,级数的个数与隐层节点上的个数相同。ANN模型由3层组成:输入层有4个节点,隐藏层有7个节点,输出层有1个节点。所使用的输入参数是与通道下游端的距离、流量、粗糙度和水流深度相关的参数。输出参数是各点的流深。利用该模型对不同流量条件下的水位剖面进行了估计。将显式人工神经网络模型与数值模型结果进行了比较,结果令人满意。该模型可以扩展到研究更复杂的流动和非棱柱形通道。该模型有望作为决策支持的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit Artificial Neural Networks For Predicting Gradually Varied Flow
The ANN procedure was used to develop an explicit equation for predicting the water level profile in a gradually varied flow. The equation consists of a series of hyperbolic tangent functions, with the number of series being the same as the number on the node in the hidden layer. The ANN model consists of 3 layers: the input layer consists of four nodes, the hidden layer has seven nodes and one node in the output layer. The input parameters used are parameters related to distance, discharge, roughness, and depth of flow at the downstream end of the channel. The output parameter is the flow depth at various points. The model has been used to estimate the water level profile for different flow conditions. The comparison between the explicit ANN model and the numerical model results is satisfactory. The models can be extended to study more complex flows and non-prismatic channels. The model is promising as a tool in decision support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信