具有交互效应的大型线性面板数据模型的异方差、误差序列相关和斜率异质性的鲁棒方法

{"title":"具有交互效应的大型线性面板数据模型的异方差、误差序列相关和斜率异质性的鲁棒方法","authors":"","doi":"10.2139/ssrn.3215661","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust approach against heteroskedasticity, error serial correlation and slope heterogeneity for large linear panel data models. First, we establish the asymptotic validity of the Wald test based on the widely used panel heteroskedasticity and autocorrelation consistent (HAC) variance estimator of the pooled estimator under random coefficient models. Then, we show that a similar result holds with the proposed bias-corrected principal component-based estimators for models with unobserved interactive effects. Our new theoretical result justifies the use of the same slope estimator and the variance estimator, both for slope homogeneous and heterogeneous models. This robust approach can significantly reduce the model selection uncertainty for applied researchers. In addition, we propose a novel test for the correlation and dependence of the random coefficient with covariates. The test is of great importance, since the widely used estimators and/or its variance estimators can become inconsistent when the variation of coefficients depends on covariates, in general. The finite sample evidence supports the usefulness and reliability of our approach.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Robust Approach to Heteroskedasticity, Error Serial Correlation and Slope Heterogeneity for Large Linear Panel Data Models with Interactive Effects\",\"authors\":\"\",\"doi\":\"10.2139/ssrn.3215661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust approach against heteroskedasticity, error serial correlation and slope heterogeneity for large linear panel data models. First, we establish the asymptotic validity of the Wald test based on the widely used panel heteroskedasticity and autocorrelation consistent (HAC) variance estimator of the pooled estimator under random coefficient models. Then, we show that a similar result holds with the proposed bias-corrected principal component-based estimators for models with unobserved interactive effects. Our new theoretical result justifies the use of the same slope estimator and the variance estimator, both for slope homogeneous and heterogeneous models. This robust approach can significantly reduce the model selection uncertainty for applied researchers. In addition, we propose a novel test for the correlation and dependence of the random coefficient with covariates. The test is of great importance, since the widely used estimators and/or its variance estimators can become inconsistent when the variation of coefficients depends on covariates, in general. The finite sample evidence supports the usefulness and reliability of our approach.\",\"PeriodicalId\":273058,\"journal\":{\"name\":\"ERN: Model Construction & Estimation (Topic)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Estimation (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3215661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3215661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种针对大型线性面板数据模型的异方差、误差序列相关和斜率异质性的鲁棒方法。首先,我们基于随机系数模型下广泛使用的混合估计量的面板异方差和自相关一致方差估计量,建立了Wald检验的渐近效度。然后,我们表明,对于具有未观察到的交互效应的模型,提出的基于偏差校正的主成分估计器也具有类似的结果。我们的新理论结果证明了使用相同的斜率估计器和方差估计器,无论是斜率均匀和异质性模型。这种鲁棒性方法可以显著降低应用研究人员模型选择的不确定性。此外,我们提出了一种新的检验随机系数与协变量的相关性和依赖性。测试是非常重要的,因为当系数的变化取决于协变量时,广泛使用的估计量和/或其方差估计量通常会变得不一致。有限样本证据支持了我们方法的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Approach to Heteroskedasticity, Error Serial Correlation and Slope Heterogeneity for Large Linear Panel Data Models with Interactive Effects
In this paper, we propose a robust approach against heteroskedasticity, error serial correlation and slope heterogeneity for large linear panel data models. First, we establish the asymptotic validity of the Wald test based on the widely used panel heteroskedasticity and autocorrelation consistent (HAC) variance estimator of the pooled estimator under random coefficient models. Then, we show that a similar result holds with the proposed bias-corrected principal component-based estimators for models with unobserved interactive effects. Our new theoretical result justifies the use of the same slope estimator and the variance estimator, both for slope homogeneous and heterogeneous models. This robust approach can significantly reduce the model selection uncertainty for applied researchers. In addition, we propose a novel test for the correlation and dependence of the random coefficient with covariates. The test is of great importance, since the widely used estimators and/or its variance estimators can become inconsistent when the variation of coefficients depends on covariates, in general. The finite sample evidence supports the usefulness and reliability of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信